期刊文献+

自适应变步长迭代动态规划方法及其在间歇过程优化中的应用 被引量:4

Self-adaptive variable-step approach for iterative dynamic programming with applications in batch process optimization
原文传递
导出
摘要 迭代动态规划(IDP)作为一种求解非线性问题的离散算法,其寻优精度和收敛速度受到时间段划分的影响.通常,时间段划分依赖主观经验,缺乏科学有效的指导.针对终端时刻固定的动态优化问题,提出一种自适应变步长IDP算法,综合考虑控制变量与目标函数值的变化,对时间段数量、长度和切换点进行优化.将该方法应用于间歇过程优化,结果表明其能够智能分配时间段数量与长度,可有效提升寻优精度. As a discrete algorithm to solve nonlinear optimization problems, iterative dynamic programming(IDP) algorithm is rather vulnerable to the stage of time in several aspects such as accuracy as well as the convergence rate. Traditionally, the time division associated with IDP algorithm relies on human's subjective experiences, lacking effective guidance. Motivated by this observation and targeted at fixed terimal time optimizaton problem, a self-adaptive variable-step IDP algorithm is introduced in this paper, which can adjust the number, length and switching point of the time stages taking account of the performance and control variables, in order to improve the performance of IDP. The approach is applied to batch process optimization simulations. The results show that the time stages can be self-adjusted and the optimization performance can be improved.
出处 《控制与决策》 EI CSCD 北大核心 2015年第11期2048-2054,共7页 Control and Decision
基金 中央高校基本科研业务费专项资金项目(YS1404 ZZ1310)
关键词 优化控制 迭代动态规划 自适应变步长 间歇过程 optimizing control iterative dynamic programming self-adaptive and variable-step batch process
  • 相关文献

参考文献15

  • 1Aiying Rong, Jos6Rui Figueira. Dynamic programming algorithms for the bi-objective integer knapsack problem[J]. European J of Operational Research, 2014, 236(1): 85-99. 被引量:1
  • 2Luus R. Optimal control by dynamic programming using systematic reduction in grid size[J]. Int J of Control, 1990, 51(5): 995-1013. 被引量:1
  • 3Adrian M Thompson, William R Cluett. Stochastic iterative dynamic programming: A Monte Carlo approach to dual control[J]. Automatica, 2005, 41(5): 767-778. 被引量:1
  • 4李前兴..工业过程迭代动态规划算法研究[D].浙江大学,2011:
  • 5Bojkov B, Luus R. Optimal control of nonlinear systems with unspecified final times[J]. Chemical Engineering Science, 1996, 51(6): 905-919. 被引量:1
  • 6Mekarapiruk W, Luus R. Iterative dynamic programming with adaptive scheme for region Size determination[J]. Hungarian J of Industrial Chemistry, 1999, 27(3): 235-240. 被引量:1
  • 7Luus R. Parametriation in nonlinear optimal control problems[J]. Optimization, 2006, 55(1/2): 65-89. 被引量:1
  • 8Min Ho Chang, Young Cheol Park, Tai-yong Lee. Iterative dynamic programming of optimal control problem using a new global optimization technique[J]. Computer Aided Chemical Engineering, 2003(3): 416-421. 被引量:1
  • 9Luus R. Iterative dynamic programming[M], Floriad: CRC Press, 2000. 被引量:1
  • 10Renfro J G, Morshedi A M, Asbjornsen O A. Simultaneous optimization and solution of systems described by differential/algebraic equations[J]. Computers & Chemical Engineering, 1987, 11(5): 503-517. 被引量:1

二级参考文献1

共引文献3

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部