摘要
压电纤维复合物在驱动、传感、结构健康检测等领域具有广泛应用,研究压电纤维复合物的驱动性能对于压电纤维复合物实际应用具有重要意义。通过实验研究不同驱动电压条件(峰值、频率及偏置)对压电纤维复合物悬臂梁结构顶端位移的影响,探讨悬臂梁基板材料与压电纤维复合物驱动性能的关系,基于欧拉-伯努利梁理论利用悬臂梁顶端位移计算压电纤维复合物的驱动力。结果表明:压电纤维复合物的驱动性能具有明显的迟滞性。悬臂梁顶端位移的大小与驱动电压峰的峰值呈线性关系,且其不仅与驱动电压的峰值有关,还与驱动电压的偏置、频率有关。压电纤维复合物的驱动性能随基板不同而不同,其对刚性铝板的驱动力为5.2 m N,对柔性麦拉膜的驱动力为0.2 m N。
The piezoelectric fiber composites have important application in the field of actuation, sensing, structural health monitoring and etc. It is important to study the actuation characteristics of piezoelectric fiber composites for a range of applications. The influences of driving voltage conditions(peak-to-peak voltage, frequency, bias) on the actuation characteristics of piezoelectric fiber composites were studied. The relationship between cantilever beam actuation performance of DFCs was investigated through the tip displacement of the cantilever, which was also used to calculate the blocking force based on Euler-Bernoulli beam theory. The results show that the hysteresis of piezoelectric fiber composite exists obviously. The tip displacement of the cantilever has a linear relationship with the driving voltage amplitude, and also is influenced by the driving voltage bias and frequency. The actuation characteristics of the piezoelectric fiber composites differ with different substrates. The blocking force for aluminum-based substrate is 5.2 m N, while it is 0.2 m N for mylar-based substrate.
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2015年第7期1904-1910,共7页
The Chinese Journal of Nonferrous Metals
基金
国家自然科学基金资助项目(51072235)
国家教育部博士点基金资助项目(20110162110044)
国防科技工业重点项目(A1420133028)
关键词
压电纤维复合物
欧拉-伯努利梁
驱动力
迟滞性
压电陶瓷
piezoelectric fiber composites
Euler-Bernoulli beam
blocking force
hysteresis
piezoelectric ceramics