摘要
Link prediction in microblogs by using unsupervised methods has been studied extensively in recent years, which aims to find an appropriate similarity measure between users in the network. However, the measures used by existing work lack a simple way to incorporate the structure of the network and the interactions between users. This leads to the gap between the predictive result and the ground truth value. For example, the F 1-measure created by the best method is around 0.2. In this work, we firstly discover the gap and prove its existence. To narrow this gap, we define the retweeting similarity to measure the interactions between users in Twitter, and propose a structural-interaction based matrix factorization model for following-link prediction. Experiments based on the real-world Twitter data show that our model outperforms state-of-the-art methods.
Link prediction in microblogs by using unsupervised methods has been studied extensively in recent years, which aims to find an appropriate similarity measure between users in the network. However, the measures used by existing work lack a simple way to incorporate the structure of the network and the interactions between users. This leads to the gap between the predictive result and the ground truth value. For example, the F 1-measure created by the best method is around 0.2. In this work, we firstly discover the gap and prove its existence. To narrow this gap, we define the retweeting similarity to measure the interactions between users in Twitter, and propose a structural-interaction based matrix factorization model for following-link prediction. Experiments based on the real-world Twitter data show that our model outperforms state-of-the-art methods.
基金
This work is supported by the National Basic Research 973 Program of China under Grant Nos. 2013CB329602 and 2014CB340405, the National Natural Science Foundation of China under Grant Nos. 61173008, 61232010, 60933005, 61402442, 61402022, and 61303244, Beijing Nova Program under Grant No. Z121101002512063, and the Natural Science Foundation of Beijing under Grant No. 4154086.