期刊文献+

基于均值漂移聚类的扩展目标量测集划分算法 被引量:10

Extended Target Measurement Set Partition Algorithm Based on Mean Shift Clustering
下载PDF
导出
摘要 在噪声环境下,存在扩展目标数未知且变化的多扩展目标跟踪量测集难以划分、计算代价高的问题。为此,提出一种基于均值漂移聚类的量测集划分算法。通过迭代更新中心点,使其收敛于局部最优,并引入极大似然估计技术估计每个划分子集中的目标数,对于目标数大于1的子集采用模糊C均值聚类算法进行二次划分,使得划分的量测子集与各个扩展目标一一对应。实验结果表明,该算法在多扩展目标量测集划分性能上明显优于传统的距离划分和K-means++划分算法,尤其是在保持跟踪精度的前提下量测集划分数和计算代价明显降低,且能较好地划分紧邻扩展目标的量测集。 Taking into account the difficulties of measurement set partition of the multiple extended target due to the unknown target number and the disturbance of the clutter. A novel measurement partition algorithm based on the mean shift clustering is proposed. The local optimum is obtained by iterating update the center point. The maximum likelihood estimation technique is introduced to estimate the number of targets for each cell,if the number is larger than one. It splits the cell into small cells by Fuzzy C-Mean(FCM) clustering algorithm until the cell corresponding to target number. Experimental results show that the proposed algorithm improves the performance of multiple Extended Target Tracking (ETT) compared with distance partition and K-means++ partition,especially effectively reduces partition number and computational cost without losing tracking accuracy,and has a good performance for spatially close targets measurement partition.
出处 《计算机工程》 CAS CSCD 2014年第12期182-187,194,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61305017) 江苏省自然科学基金资助项目(20130154)
关键词 多扩展目标跟踪 量测集划分 均值漂移聚类 极大似然估计 距离划分 紧邻的扩展目标 multiple Extended Target Tracking (ETT) measurement set partition mean shift clustering maximum likelihood estimation distance partition spatially close extended target
  • 相关文献

参考文献15

  • 1Mahler R.PHD Filters for Nonstandard Targets,I:Extended Targets[C]//Proceedings of the12th International Conference on Information Fusion.Seattle,USA:IEEE Press,2009:915-921 被引量:1
  • 2Salmond D J,Parr M C.Track Maintenance Using Measurements of Target Extent[J].IEE Proceedings of Radar Sonar and Navigation,2003,150(6):389-395. 被引量:1
  • 3Koch J W.Bayesian Approach to Extended Object and Cluster Tracking Using Random Matrices[J].IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):1042-1059. 被引量:1
  • 4连峰,韩崇昭,刘伟峰,元向辉.高斯混合扩展目标概率假设密度滤波器的收敛性分析[J].自动化学报,2012,38(8):1343-1352. 被引量:16
  • 5Mahler R P S.Multitarget Bayes Filtering via First-order Multitarget Moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178. 被引量:1
  • 6Granstrom K,Lundquist C,Orguner U.A Gaussian Mixture PHD Filter for Extended Target Tracking[C]//Proceedings of the13th International Conference on Information Fusion.Edinburgh,UK:[s.n.],2010:1-8. 被引量:1
  • 7Orguner U,Lundquist C,Granstrom K.Extended Target Tracking with a Cardinalized Probability Hypothesis Density Filter[C]//Proceedings of the14th International Conference on Information Fusion.Chicago,USA:IEEE Press,2011:1-8. 被引量:1
  • 8Granstrom K,Lundquist C,Orguner O.Extended Target Tracking Using a Gaussian-mixture PHD Filter[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(4):3268-3286. 被引量:1
  • 9Granstrom K.A PHD Filter for Tracking Multiple Extended Targets Using Random Matrices[J].IEEE Transactions on Signal Proceeding,2012,60(11):5657-5671. 被引量:1
  • 10Zhang Yongquan,Ji Hongbing.A Novel Fast Partitioning Algorithm for Extended Target Tracking Using a Gaussian Mixture PHD Filter[J].Signal Processing,2013,93(11):2975-2985. 被引量:1

二级参考文献1

共引文献15

同被引文献88

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部