期刊文献+

神经元混沌放电局部可视网络模型分析

Network model analysis of chaotic neuronal firing based on local visibility graph
下载PDF
导出
摘要 为研究神经元的放电时间序列随时间的演化特性,提出了一种将放电时间序列的时间域映射到网络域进行处理的方法,即研究基于神经元的复杂网络随时间的演化特征来刻画神经元放电时间序列的时变特性。通过构建滑动时间窗内复杂网络拓扑,并计算其局部可视图的统计特性来实现时间序列时变特征的描述。对神经元map模型三种簇放电时间序列进行复杂网络构建并实现网络拓扑可视化,同时分析网络的统计特性来验证方法的有效性。结果表明,网络的拓扑、平均路径长度和聚类系数均能反映原时间序列的时变形态特征,并对神经元簇放电具有参数敏感性;簇放电稀疏程度与社团大小存在相关性。神经元放电时间序列网络域的时变演化特征能刻画其时间域特性,为神经电信号的处理提供了新的思路。 In order to investigate the evaluation of neuronal firing time series with time,this paper proposed an improved visibility graph method called local visibility graph method for constructing complex networks from time series,which could map time-domain of neuronal firing time series into network domain. By constructing a complex network topology and calculating its statistical properties in a sliding time window,the method described the time-varying statistical characteristics of neuronal firing time series. As a paradigm,three time series of different bursting modes generated by map neuronal model were used to construct networks,realize visualize topology and analyze statistical characteristics. The results show that network topology,ave-rage path length and clustering coefficient can depict time-varying morphological characteristics of the time series. The three properties show parameter sensitivity to neuronal bursting. There is a correlation between sparse degree of neuronal bursting and the community size in the complex networks. Evolution characteristics of neuronal firing time series in network-domain can depict their time-domain features,and the ideology proposed in this paper provides a new way for on-line neural signal processing.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3756-3758,3783,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61072012) 河北科技大学博士科研启动基金资助项目(QD201302)
关键词 局部可视图 复杂网络 神经元 混沌放电 local visibility graph complex networks neuron chaotic firing
  • 相关文献

参考文献4

二级参考文献118

  • 1Watts D J and Strogatz S H 1998 Nature 393 440. 被引量:1
  • 2Barabasi A L and Albert R 1999 Science 286 509. 被引量:1
  • 3Jeong H, Tombor B and Albert R 2000 Nature 407 651. 被引量:1
  • 4Garlaschelli D, Caldarelli G and Pietronero L 2003 Nature 423 165. 被引量:1
  • 5Gong Z Q, Zhou L, Zhi R and Feng G L 2008 Acta Phys. Sin. 57 5351 (in Chinese). 被引量:1
  • 6Tsonis A A, Swanson K L and Roebber P J 2006 Bull. Amer. Meteor. Soc. 87 585. 被引量:1
  • 7Tsonis A A and Swanson K L 2008 Phys. Rev. Left. 100 228502. 被引量:1
  • 8Tsonis A A and Kyle L S 2008 J. Climate 21 2990. 被引量:1
  • 9Shi Y N 1984 Journal of Nanjing University 20 796 (in Chinese). 被引量:1
  • 10Yang P C and Zhou X J 2005 Acta Meteor. Sin. 63 556 (in Chinese). 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部