期刊文献+

基于加性协同的离散贝叶斯网络参数学习

Parameter Learning of Discrete Bayesian Network Based on Additive Synergistic Constraints
下载PDF
导出
摘要 针对小数据集条件下离散BN参数学习的问题,为了将加性协同约束融入到BN参数学习过程中,通过借鉴经典保序回归算法的思想,提出四种处理加性协同约束的方法,进而利用经典的草地湿润模型对改进算法进行仿真,并与最大似然估计算法进行对比,仿真结果表明,改进算法在精度上有一定优势,能够很好的对最大似然估计算法进行修正,得到相对准确的参数,然而时效性则劣于最大似然估计算法。进一步将改进算法应用到弹道导弹突防模型的参数学习中,通过推理分析验证算法的有效性。 In order to integrate additive synergistic constrains into the learning process of discrete Bayesian Net- work parameters, four methods to deal with the additive synergistic constraints are proposed based on the idea of clas- sical isotonic regression algorithm. The four methods are simulated by using the classic wet grass model, and com- pared with the maximum likelihood estimation algorithm. Simulation results show that the proposed methods have some advantages in accuracy, which can correct the results of the maximum likelihood estimation algorithm to obtain relatively accurate parameters, while timeliness is inferior to the maximum likelihood estimation algorithm. Further- more, the proposed methods are used to learn the parameters of the model for ballistic missile penetration, and the ef- fectiveness of the methods is verified by inference analysis.
出处 《计算机仿真》 CSCD 北大核心 2014年第10期61-66,127,共7页 Computer Simulation
基金 国家自然科学基金(60774064) 全国高校博士点基金(20116102110026)
关键词 小数据集 加性协同 贝叶斯网络 参数学习 Small data sets Additive synergistic Bayesian networks Parameters learning
  • 相关文献

参考文献16

  • 1J Pearl, Probabilistic Reasoning in Intelligent Systems [ R ]. Mor-gan Kaufman n, 1988. 被引量:1
  • 2Changhong Chen, Liang Jimin, Zhu Xiuchang. Gait recognitionbased on improved dynamic Bayesian networks[ J] . 2011 ,44,988-995. 被引量:1
  • 3Swathi P Iyer, Izhak Shafran, David Grayson, Kathleen Gates. In-ferring functional connectivity in MRI using Bayesian network struc-ture learning with a modified PC algorithm [ J ]. Neuroimage,2013,75(7) :165 -175. 被引量:1
  • 4Bomi Song, Changyong Lee, Yongtae Park. Assessing the risks ofservice failures based on ripple effects: A Bayesian network ap-proach [J]. International. Journal of Production Economics, 2013,26(3) :493 -504. 被引量:1
  • 5Agnieszka Onisko, Marek J Druzdzel. Impact of precision ofBayesian network parameters on accuracy of medical diagnostic sys-tems[ J] . Artificial Intelligence in Medicine, 2013 ,31 ( 11 ) : 197-206. 被引量:1
  • 6E Altendorf, A Restificar, T Dietterich. Learning from Sparse Databy Exploiting Monotonicity Constraints [ C ]. Proceeding of theTwenty First conference on Uncertainty in Artificial Intelligence(UAI 2005),Jul. 2005:18-26. 被引量:1
  • 7Ad Feelders, Linda C Van der Gaag. Learning Bayesian NetworksParameters under Order Constraints [ J ] . Journal of ApproximateReasoning, May. 2006,42( 1 -2) ; 37 -53. 被引量:1
  • 8Cassio P de Campos, Ji Qiang. Improving Bayesian Network Pa-rameter Learning using Constraints [ C ]. Nineteenth InternationalConference on Pattern Recognition ( ICPR 2008 ) , Dec. 2008 : 1-4. 被引量:1
  • 9任佳,高晓光,茹伟.数据缺失的小样本条件下BN参数学习[J].系统工程理论与实践,2011,31(1):172-177. 被引量:9
  • 10R S. Niculescu, T M Mitchell, R B Rao. Bayesian NetworkLearning with Parameter Constraints [ J ]. Journal of MachineLearning Research, Jan. 2006,7( 1) : 1357 - 1383. 被引量:1

二级参考文献10

  • 1王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 2史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 3Friedman N. The Bayesian structural EM algorithm[C]// Fourteenth Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1998: 125-133. 被引量:1
  • 4Sehgal M S, Gondal I, Dooley L S. Collateral missing value imputation: A new robust missing value estimation algorithm for microarray data[J]. Bioinformatics, 2005, 21(10): 2417-2423. 被引量:1
  • 5Oba S, Sato M, Takemasa I, et al. A Bayesian missing value estimation method for gene expression profile data[J]. Bioinformatics, 2003, 19(16): 2088 2096. 被引量:1
  • 6Altendorf E, Restificar A C, Dietterich T G. Learning from sparse data by exploiting monotonicity constraints[C]// Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005: 18-26. 被引量:1
  • 7Feelders A. A new parameter learning method for Bayesian networks with qualitative influences[C]//The Twenty- Third Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon: AUAI Press, 2007:117 124. 被引量:1
  • 8Campos de C P, Cozman F G. Belief updating and learning in semi-qualitative probabilistic networksICl//Proceedi ngs of the 21st Conference in Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005: 153- 160. 被引量:1
  • 9Campos de C P, Ji Q. Improving Bayesian network parameter learning using constraints[C]//The 19th International Conference on Pattern Recognition. Florida, USA: IEEE, 2008: 113-120. 被引量:1
  • 10Lauritzen S L. The EM algorithm for graphical association models with missing data[J]. Computational Statistics and Data Analysis, 1995, 19(2): 191 201. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部