期刊文献+

车车通信链路延时补偿算法研究 被引量:4

Research on delay time compensation for the communication link of V2V
下载PDF
导出
摘要 车车通信已经成为智能车辆获取外界信息的重要手段,而通信延时将严重影响车辆之间信息传输的准确性.为了减小通信延时问题对车车通信链路产生的不利影响,有必要对延时进行一定的补偿.本文将首先基于当前统计模型对前方车辆的运动状态进行建模,然后利用加速度方差自适应卡尔曼滤波模型对前车运动状态进行估计,在此基础上增加延时补偿算法,对前车的位置、速度信息进行一定的补偿;最后,通过Matlab软件对本文所提出的延时补偿方法进行仿真验证,仿真结果显示了本文所述方法的有效性. Vehicle-vehicle communication(v2 v) has become an important means for intelligent vehicles to obtain external information,and the communication delay directly affects the accuracy of the received information.In order to reduce the adverse effect of communication delay on the communication link, it is necessary to make some compensation for the delay. This paper first modelling the vehicle motion based on the current statistical model, and then based on the adaptive kalman filter model, the vehicle motion state is predicted,and then the delay compensation algorithm is used to compensate the received information.At last, the delay compensation algorithm is simulated by Matlab software, and the simulation results show the effectiveness of the proposed algorithm.
作者 蒋华涛 常琳 李庆 陈大鹏 JIANG Hua-tao;CHANG Lin;LI Qing;CHEN Da-peng(Institute of Microelectronics of Chinese Academy of Sciences,Beijing 10029,China;CAS R&D Center For Interact of Things,Wuxi 214135,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《微电子学与计算机》 北大核心 2019年第3期1-6,共6页 Microelectronics & Computer
基金 中国科学院战略性先导专项(XDA06040300)
关键词 车车通信 通信延时 当前统计模型 自适应卡尔曼滤波模型 延时补偿 vehicle-vehicle communication communication delay current statistical model adaptive kalman filter model delay compensation
  • 相关文献

参考文献8

二级参考文献46

  • 1吴勇,林家骏.一种改进的滤波器噪声模型的自适应估计法[J].华东理工大学学报(自然科学版),2004,30(4):433-436. 被引量:5
  • 2巴宏欣,赵宗贵,杨飞,董强,张涛.机动目标的模糊自适应跟踪算法[J].系统仿真学报,2004,16(6):1181-1183. 被引量:30
  • 3张亚明,陈绍炜,夏林英.基于NS2的无线网络仿真研究[J].信息安全与通信保密,2007,29(3):58-60. 被引量:6
  • 4Rashad S, Aboelmagd N. Online INS/GPS Integration with a Radial Basis Function Neural Network [J]. IEEE Aerospace and Electronic Systems Magazine (S0885-8985), 2005, 20(3): 8-14. 被引量:1
  • 5Al-Dhaher A G H, Mackesy D. Multi-sensor data fusion architecture [C]// The 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications, Ottawa, Ontario, Canada, 2004. New York: IEEE publisher, 2004:159-163. 被引量:1
  • 6Hu Congwei, Chen Wu. Adaptive Kalman Filtering for Vehicle Navigation [J]. Journal of Global Positioning System (S1446-3156), 2003, 2(1): 227-233. 被引量:1
  • 7王宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991. 被引量:1
  • 8Y T Chan, K C Ho. A Simple and Efficient Estimator for Hyperbolic Location [J]. IEEE Transactions on Signal Processing (S1053-587X), 1994, 42(8): 1905-1915. 被引量:1
  • 9PERKINS C, BELDING R E, DAS S. Ad-hoc On-demand Distance Vector (AODV) Routing[S]. IETF RFC 3561, 2003. 被引量:1
  • 10MARINA M K, DAS S R. On-demand multipath distance vector routing for ad hoc networks[A]. Proceedings of IEEE International Conference on Network Protocols[C]. 2001.14-23. 被引量:1

共引文献51

同被引文献46

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部