期刊文献+

基于吞噬聚类的关键帧提取新算法 被引量:1

Algorithm of Key Frame Extraction Based on Swallowing Cluster
下载PDF
导出
摘要 为了有效、自适应地提取镜头中的关键帧,提出了一种基于吞噬聚类的关键帧提取新算法。该算法通过邻近吞噬体的互相吞噬,聚类相似的数据对象,最后所剩吞噬体的吞噬中心即为视频帧的聚类中心,距离聚类中心最近的特征向量所代表的视频帧就是所需要的镜头关键帧。对该算法利用MATLAB仿真并通过与传统算法对比,结果表明,相对于传统算法,该算法的查全率和查准率都有了一定程度的提高。 In order to extract the key frames in the shot self-adaptively and effectively, a new algorithm of key frame extraction based on swallowing cluster is proposed. This algorithm gathers similar data objects through swallowing each other between the adjacent swallowing objects, and the swallowing centers of the swallowing objects leaved behind at last are the cluster centers of the frames. Frames represented by the features vectors which are the nearest from the cluster centers are the key frames. Simulating the new arithmetic through the MATLAB, and comparing it with the traditional arithmetic, it shows that the recall ratio and precision ratio have been improved to some extent.
出处 《电视技术》 北大核心 2014年第13期212-214,共3页 Video Engineering
关键词 视频检索 关键帧提取 吞噬聚类算法 video retrieval key frame extraction algorithm of swallowing cluster
  • 相关文献

参考文献10

二级参考文献39

共引文献57

同被引文献17

  • 1束鑫,吴小俊,潘磊.一种新的基于形状轮廓点分布的图像检索[J].光电子.激光,2009,20(10):1385-1389. 被引量:10
  • 2EJAZ N, TARIQ T B, BAIK S W. Adaptive key frame extraction for video summarization using an aggregation mechanism [ J ]. Journal of Visual Communication and Image Representation, 2012,23 ( 7 ) : 1031-1040. 被引量:1
  • 3LIU T,ZHANG H J, QI F. A novel video key-frame-extraction al- gorithm based on perceived motion energy model [ J ]. IEEE Trans. Circuits and Systems for Video Technology, 2003, 13 (10): 1006-1013. 被引量:1
  • 4XU Q, LIU Y,LI X, et al. Browsing and exploration of video se- quences: a new scheme for key frame extraction and 3D visualization using entropy based .Iensen divergence [ J ]. Information Sciences, 2014( 278 ) :736-756. 被引量:1
  • 5LIU X, SONG M, ZHANG L, et al. Joint shot boundary detection and key frame extraction[ C]//Proc. IEEE International Conference on Pattern Recognition. [ S.l.] :IEEE Press,2012: 2565-2568. 被引量:1
  • 6KUMAR M, LOUI A C. Key frame extraction from consumer videos using sparse representation[ C 1//Proc. IEEE International Confer- ence on Image Processing. [ S.l. ] : IEEE Press, 2011 : 2437-2440. 被引量:1
  • 7ENGELBERG S. Compressive sensing[ J]. IEEE Instrumenlation & Measurement Magazine ,2012,15 ( 1 ) :42-46. 被引量:1
  • 8DONOI-IO D L. Compassed sensing[ J ]. IEEE Trans. Information Theo ,2006,52 (4) : 1289-1306. 被引量:1
  • 9FRIEDLAND S, LI Q, SCHONFELD D. Compressive sensing of spruce tensors [ J ]. IEEE Trans. Image Processing, 2014, 23(10) :4438--4447. 被引量:1
  • 10LI P, HASTIE T J, CHURCH K W. Vel'y sparse random projec- tions[ C]//Proe. the 12th ACM S1GKDD International Conference on Knowledge Discovery And Data Mining. [ S.l. I : IEEE Press, 2006 : 287-296. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部