期刊文献+

基于改进HWD的小波阈值法图纸去噪研究

Research on Drawings Denoising Based on Improved Wavelet Threshold Algorithm with Hybrid Wavelet-Directional Filter Transform
下载PDF
导出
摘要 针对小波阈值法中的小波变换只能将图像分解到有限方向,而不能较好地表征图像多方向性的问题,用改进混合小波-方向滤波器组(HWD:Hybrid Wavelet-Directional filter banks)变换代替单纯小波变换,使在图像分解过程中更好地表征图像的多方向性,保存更多的图像信息;在分析小波阈值去噪原理的基础上,改变隶属度函数,构建HWD隶属度的权系数,从而避免因小波系数间存在幅值交叉使小波阈值法的应用受到限制。改进的HWD在损失最少图像小波系数的前提下,能最大限度地置零噪声小波系数。实际工程图纸去噪研究表明,改进的小波阈值法可在去除一定噪声的前提下,保留更多的工程图纸细节信息。 For the defects that the image can only be decomposed into a finite orientation by the wavelet transformation, and multi-directional of image can not be better characterized, the directional filter is applied to the method of wavelet threshold, namely, the HWD ( Hybrid Wavelet-Directional filter banks) instead of the mere wavelet transform is used to better characterized the multi-directional of image and to retain more image information. To avoid the phenomenon of amplitude cross exists between image wavelet coefficients and noise wavelet coefficients, the method of wavelet thresholding was restricted by this shortcoming, membership function was changed based on the principle of the wavelet, and the membership weights of HWD was built by the membership function. The wavelet coefficients of noise were set to zero maximum with losing the image coefficients at least by this improved HWD. The wavelet coefficients of noise were set to zero maximum with losing the image coefficients at least by this improved HWD. The studies show that more details of engineering drawings can be retained by the improved wavelet threshold method beside removing some noise.
出处 《吉林大学学报(信息科学版)》 CAS 2014年第3期239-246,共8页 Journal of Jilin University(Information Science Edition)
基金 国家自然基金资助项目(61374127) 黑龙江省教育厅科学技术研究基金资助项目(12511014) 黑龙江省博士后科研基金资助项目(LBH-Q12143)
关键词 小波变换 方向滤波器 小波阈值法 工程图纸去噪 wavelet transform directional filter wavelet thresholding algorithm engineering drawings denoising
  • 相关文献

参考文献12

二级参考文献53

  • 1高浩军,杜宇人.中值滤波在图像处理中的应用[J].电子工程师,2004,30(8):35-36. 被引量:66
  • 2邓铭辉,郝燕玲.3D小波变换的抗裁剪鲁棒数字图像水印算法[J].吉林大学学报(信息科学版),2004,22(4):420-425. 被引量:1
  • 3[1]Donoho David L. Denoising by softthresholding [J]. IEEE Transactions on Information Theory, 1995,41 (3): 613~ 627. 被引量:1
  • 4[2]Marr D. Vision[D]. New York: Freeman, 1982:127~130. 被引量:1
  • 5[3]Castleman K R. Digital image processing [M]. USA, New Jersey:Prentice Hall, Inc. , 1996:359~360. 被引量:1
  • 6[4]Stephane Mallat. Zero-Crossing of a wavelet transform [J].IEEE Trans. Information Theory, 1991,37(4) :1019~1033. 被引量:1
  • 7[5]Stephane Mallat, Wen Liang Hwang. Singularity detection and processing with wavlets[J]. IEEE Trans. Information Theory. 1992,38(2) :617~643. 被引量:1
  • 8[6]Stephane Mallat, Sifen Zhong. Characterization of signals from multiscale edges[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1992,14 (7): 710~ 733. 被引量:1
  • 9[7]Donoho David L, Johnstone Iain M. Threshold selection for wavelet shrinkage of noisy data [A]. In: Proc. 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C], Baltimore, Maryland. 1994,1 :A24-A25. 被引量:1
  • 10Candéc E J,Donoho D L.Ridgelets:A key to higher-dimensional intermittency?[J].Philophical Transactions of the Royal Society of London,1999,357(1760):2495-2590. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部