期刊文献+

噪声功率不确定性区间估计和降低SNR WALL恶化的能量检测算法 被引量:7

Estimation of Noise Power Uncertainty Interval and Energy Detector with Lowering SNR WALL Deterioration
下载PDF
导出
摘要 能量检测是认知无线电系统中广泛采用的空闲频谱检测方案,但其性能受到噪声功率不确定性(NPU)的严重影响。该文提出一种新颖的复杂度较低的NPU区间估计算法,并且从理论上分析了估计的噪声功率对能量检测信噪比墙(SNR WALL)恶化的影响,得出了SNR WALL恶化性定理。进一步基于门限修正提出一种改进的能量检测算法以消除SNR WALL恶化。仿真结果表明,该算法能较为精确地估计NPU区间,并且验证了SNR WALL恶化性定理的正确性;同时,改进的能量检测算法性能要优于稳健的统计方案(RSA)能量检测的结果,并且改进后降低了SNR WALL恶化,提高了检测的鲁棒性。 Energy Detector (ED) is the most common way of idle spectrum sensing in cognitive radio. However, its performance may suffer seriously from the Noise Power Uncertainty (NPU). In this paper, a low computational algorithm is proposed to estimate the NPU interval, and the SNR WALL deterioration phenomenon with estimated noise power is analyzed theoretically. The SNR WALL deterioration theorems are obtained. In addition, a new ED algorithm based on modified threshold is proposed to eliminate SNR WALL deterioration. Numerical simulation results show that the proposed algorithm can estimate accurately the NPU interval, and verify the correctness of the SNR WALL deterioration theorems. Furthermore, both analytical and simulation results show that the proposed ED under NPU outperforms the ED of Robust Statistics Approach (RSA). The SNR WALL deterioration can be reduced effectively, hence improving the robustness of detection.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第2期364-370,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271259,61301123) 重庆市自然科学基金(CTSC2011jjA40006) 重庆市教委科学技术研究项目(KJ120501,KJ120502,KJ130536) 重庆市教委项目(Kjzh11206)资助课题
关键词 认知无线电 噪声功率不确定性(NPU) NPU区间估计 信噪比墙恶化 能量检测 Cognitive Radio (CR) Noise Power Uncertainty (NPU) Estimation of NPU interval SNR WALL deteriorating Energy Detector (ED)
  • 相关文献

参考文献2

二级参考文献25

  • 1Yucek T and Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications [J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 116-130. 被引量:1
  • 2Akyildiz I F, Lee W, and Vuran M, et al.. A survey on spectrum management in cognitive radio networks [J]. IEEE Communications Magazine, 2008, 46(4): 40-48. 被引量:1
  • 3Haykin S, Thomson D J, and Reed J H. Spectrum sensing for cognitive radio [J]. Proceedings of the IEEE, 2009, 97(5): 849-877. 被引量:1
  • 4Ma J, Zhao G D, and Li Y for cooperative spectrum networks [J]. IEEE Soft combination and detection sensing in cognitive radio Transactions on Wireless Communications, 2008, 7(11): 4502-4507. 被引量:1
  • 5Hossain E and Bhargava V K. Cognitive Wireless Communication Networks [M]. New York: Springer Science Business Media, 2007: 118-119. 被引量:1
  • 6Digham F, Alouini M S, and Simon M K. On the energy detection of unknown signals over fading channels [J] IEEE Transactions on Communications, 2007, 55(1) 21-24. 被引量:1
  • 7Ghasemi A and Sousa E S. Spectrum sensing in cognitive radio network: the cooperation-processing tradeoff [J]. Wireless Communications and Mobile Computing, 2007, 7(9): 1049-1060. 被引量:1
  • 8Shen J, Liu S, and Wang Y, et al.. Robust energy detection in cognitive radio [J]. IET Communications, 2009, 3(6): 1016-1023. 被引量:1
  • 9Joshi D R, Popescu D C, and Dobre O A. Adaptive spectrum sensing with noise variance estimation for dynamic cognitive radio systems [C]. 44th Annual Conference on Information Sciences and Systems. Princeton, NJ, Mar. 17-19, 2010: 1-5. 被引量:1
  • 10Ye Z, Memik G, and Grosspietsch J. Energy detection using estimated noise variance for spectrum sensing in cognitive radio network [C]. IEEE Wireless Communications and Networking Conference. Las Vegas, NV, USA, Mar. 31-Apr. 4, 2008: 711-716. 被引量:1

共引文献13

同被引文献68

  • 1鞠平,郑世宇,徐群,孙淑琴,畅广辉,范斗,吴峰,严登俊.广域测量系统研究综述[J].电力自动化设备,2004,27(7):37-40. 被引量:41
  • 2KAPLAN E D,HEGARTY C J.GPS原理与应用[M].2版,寇艳红,译.北京:电子工业出版社,2007:476-495. 被引量:25
  • 3NDILI P, ENGE A. GPS receiver autonomous inter- ference detection[C]//In Proc. IEEE Position Loca- tion Nay. Syrup. , 1998:123-130. 被引量:1
  • 4URKOWIRZ H. Energy detection of unknown deter-ministic signals [C]//Proc IEEE, 1967,55 (4): 523- 531. 被引量:1
  • 5SHEN J, LIU S, WANG Y, et al. Robust energy detection in cognitive radio[J].IET Communica- tions, 2009, 3(6) : 1016-1023. 被引量:1
  • 6SHENG Bin. A robust non-data-aided SNR estimation method for OFDM systems[J]. Transactions on Emerging Telecommunications Technologies, 2013, 26(2): 103-106. doi:10.1002/ett.2612. 被引量:1
  • 7SAVAUX V, DJOKO-KOUAM M, LOUET Y, et al. Convergence analysis of a joint signal-to-noise ratio and channel estimator for frequency selective channels in orthogonal frequency division multiplexing context[J]. IET Signal Processing, 2014, 8(6): 693-701. doi:10.1049/ iet-spr.2013.0407. 被引量:1
  • 8SUN Minying, LI Yuan, and SUN Sumei. Impact of SNR estimation error on turbo code with high-order modulation[C]. IEEE 59th Vehicular Technology Conference, Milan, 2004, 3: 1320-1324. doi:10.1109/VETECS.2004. 1390467. 被引量:1
  • 9BAUMGARTNER S, HIRTZ G, and BAUMGARTNER A. A modified maximum likelihood method for SNR estimation in OFDM based systems[C]. IEEE International Conference on Consumer Electronics.(ICCE), Las Vegas, 2014: 155-158. doi: 10.1109/ICCE.2014.6775951. 被引量:1
  • 10CUI Tao and TELLAMBURA C. Power delay profile and noise variance estimation for OFDM[J]. IEEE Communications Letters, 2006, 10(1): 25-27. doi:10.1109/ LCOMM.2006.1576558. 被引量:1

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部