期刊文献+

多塔斜拉-悬吊协作桥活载效应近似计算方法 被引量:3

Approximate Analysis Method of Multi-tower Cable-stayed Suspension Bridges Under Live Load
下载PDF
导出
摘要 根据斜拉-悬吊协作桥的受力特点,建立结构简化计算模型.基于悬索桥重力刚度理论,推导多塔斜拉-悬吊协作桥的悬吊部分在活载作用下的竖向位移表达式.针对多塔斜拉-悬吊协作桥的关键力学问题,应用推导出的竖向位移表达式,给出主梁最大活载挠度、塔顶纵向位移、主缆恒活载轴力和中塔主缆抗滑移系数等关键力学参数的估算公式.建立主跨为600,1 080和1 400m的三塔斜拉-悬吊协作桥和主跨为1 400m的二至六塔斜拉-悬吊协作桥有限元模型,较全面地验证所推导的公式.结果表明:对于三塔斜拉-悬吊协作桥,关键力学参数的最大误差为15%左右;对于四塔及以上斜拉-悬吊协作桥,关键力学参数的最大误差为20%左右. Based on the mechanical property of cable-stayed suspension bridges,a reasonable and simplified model is established and the deflection expression of girder beam of multi-tower cable-stayed suspension bridge under live load is deduced in view of the gravity stiffness theory of suspension bridge.Then,some approximate formulats are presented,including maximum deflection of girder beam,displacement of the top of middle town,the axis force of main cable and the safety coefficient of restricting cable slide and so on.In order to verify the approximate formulas,three-dimensional finite element models which are established,which are analyzed with finite element software ANSYS.These models involve typical cable-stayed suspension bridges,such as three-towered bridges with different main spans,which are 600,1 080 and 1 400 m,and the 1 400 m main-span bridges of different numbers of towers ranging from 2 to 6.In comparison with the results of finite element analysis,the result of this investigation clarifies the maximum error of the key mechanic parameters calculated by the proposed approximate formulas is within 15% for three-towered cable-stayed suspension,20% for bridges over four towers.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期1609-1617,共9页 Journal of Tongji University:Natural Science
基金 国家"九七三"重点基础研究发展计划(2013CB036300)
关键词 多塔 斜拉-悬吊协作桥 近似计算 重力刚度法 关键力学问题 multi-tower cable-stayed suspension bridge approximate analysis theory of gravity stiffness key mechanics problem
  • 相关文献

参考文献14

  • 1Brotton D M.The solution of suspension bridge problems by digital computers,Part Ⅰ[J].The Structure Engineering,1965,41(3):200. 被引量:1
  • 2Brotton D M.The solution of suspension bridge problems by digital computers,Part Ⅱ[J].The Structure Engineering,1965,41(7):213. 被引量:1
  • 3BuonopaneSG,Billington D P.Theory and history of suspension bridge design from 1823 to 1940[J].Journal of Structural Engineering,1993,119(3):954. 被引量:1
  • 4杨进.多塔多跨悬索桥应用于海峡长桥建设的技术可行性与技术优势[J].桥梁建设,2009,39(2):36-39. 被引量:27
  • 5张哲,王会利,石磊,秦泗凤.自锚式斜拉-悬索协作体系桥基础微分方程近似推导[J].工程力学,2008,25(5):131-136. 被引量:2
  • 6叶毅..自锚式斜拉—悬索协作体系桥参数敏感性与若干问题研究[D].大连理工大学,2010:
  • 7夏国平..斜拉—悬索协作体系桥的结构体系研究及其弹性地基梁算法[D].大连理工大学,2010:
  • 8Koichi S.Deflection theory of multispan suspension bridges considering deflection of towers and its numerical examples of various influence lines[C]// Proceeding of Japan Society of Civil Engineers.[S.l.]:Japan Society of Civil Engineers,1971,190:11-22. 被引量:1
  • 9Alan J.Gravity stiffness of classical suspension bridges[J].Journal of Structural Engineering,1983,109(1):16. 被引量:1
  • 10徐君兰,向中富.关于悬索桥的重力刚度[J].重庆交通学院学报,2000,19(2):71-74. 被引量:26

二级参考文献17

共引文献91

同被引文献19

  • 1梁鹏,秦建国,袁卫军.超大跨度斜拉桥活载几何非线性分析[J].公路交通科技,2006,23(4):60-62. 被引量:9
  • 2潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2005. 被引量:3
  • 3Vik M, Pakdemirli M. Non-linear vibrations of suspension bridges with external excitationEJ~. International of Non- Linear Mechanics,2005, 40(6) : 901-923. 被引量:1
  • 4Boonyapinyo V,Lauhatanon Y, Lukkunaprasit P. Non- linear aerostatie stability analysis of suspension bridges F J-1. Engineering Structures, 2006,28 (5) : 793 - 803. 被引量:1
  • 5Matson D D. Lions' Gate Suspension Bridge: Design o{ the Suspended Structure Replacement [-C~// New ASCE, 20O5. 被引量:1
  • 6(EVIK M, PAKDEMIRLI M. Non-linear Vibrations of Suspension Bridges with External Excitation [ J ]. International Journal of Non-linear Mechanics, 2005, 40 (6) : 901 -923. 被引量:1
  • 7BOONYAPINYO V, LAUHATANON Y, LUKKUNA- PRASIT P. Nonlinear Aerostatic Stability Analysis of Suspension Bridges [ J ]. Engineering Structures, 2006, 28 (5): 793-803. 被引量:1
  • 8MATSON D D. Lions' Gate Suspension Bridge: Design of the Suspended Structure Replacement [ C ] //Metropolis and Beyond: Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium. New York: ASCE, 2005. 被引量:1
  • 9BRUNO D, LEONARDI A. Natural Periods of Long-span Cable-stayed Bridges [ J ]. Journal of Bridge Engineering, 1997, 2 (3): 105-115. 被引量:1
  • 10KAROUMI R. Some Modeling Aspects in the Nonlinear Finite Element Analysis of Cable Supported Bridges [ J]. Computers & Structures, 1999, 71 (4) : 397 -412. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部