期刊文献+

带孔硅纳米薄膜热整流及声子散射特性研究 被引量:4

Thermal rectification and phonon scattering in silicon nanofilm with triangle hole
原文传递
导出
摘要 本文基于非平衡的分子动力学模拟方法计算了带有三角形孔的硅纳米薄膜的界面热阻特性,结果表明300—1100K范围内随着热流方向的改变,在含有三角形孔的硅纳米薄膜中存在热整流效应,热整流系数达28%.同时借助于声子波包动力学模拟方法,获得了不同频率下的纵波声子在三角形孔处的散射特性,结果表明纵波声子在散射过程中产生了横波声子,并且从三角形底部向顶部入射的声子能量透射系数比反向时平均低22%.不对称结构引起的声子透射率的差异是引起热整流效应的主要因素. Thermal rectification has potential applications in the thermal management of electronics and energy saving. Discovering thermal rectification phenomena and understanding the mechanism are very essential. Reported in this paper is the thermal rectification in silicon nanofilm with triangle holes by the non-equilibrium molecular dynamics simulation. The results show that in the silicon nanofilm with triangle holes, the difference in thermal rectification coefficient is around 28% with the variation of heat flow direction in a temperature range from 300 K to 1100 K. The phonon wave packet dynamic simulations indicate that transverse phonons are generated during the scattering of longitudinal phonons in the nanofilms. When the phonon transport direction is reversed, the average phonon energy transmission coefficient is changed by about 22% in all the frequency range. The difference in phonon transmissity, which is caused by asymmetric structure, is regarded as being attributed mainly to the thermal rectification in silicon film with triangle holes.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第2期471-475,共5页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB933200) 国家自然科学基金(批准号:51176091)资助的课题~~
关键词 热整流 三角形孔 声子散射 界面热阻 thermal rectification, triangle hole, phonon scattering, interfacial thermal resistance
  • 相关文献

参考文献3

二级参考文献6

共引文献6

同被引文献52

  • 1Erikson K J, Gibb A L, Sinitskii A, et al. Longitudi- nal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons [J]. Nanoletters, 2011, 11(8): 3221- 3226. 被引量:1
  • 2ZHENG Fawei, ZHOU Gang, LIU Zhirong, et al. Predic- tion of Half Metallicity Along the Edge of Zigzag Boron Nitride Nanoribbons [J]. Physical Review B, 2008, 78: 205415-205419. 被引量:1
  • 3Sevik C, Kinaci A, Haskins J B, et al. Characterization of Thermal Transport in Boron Nitride Nanostructures [J]. Physical Review B, 2011, 84:085409. 被引量:1
  • 4Yang Kaiyang, Chen Yaunping, Xie Yue'e, et al. Effect of Triangle Vacancyle on Thermal Transport in Boron Ni- tride Nanoribbons [J]. Solid State Communications, 2011, 151:460-464. 被引量:1
  • 5Muralidharan K,Erdmann R G, Runge K, et al. Asym- metric Energy Transport in Defected Boron Nitride Nanoribbons: Implications for Thermal Rectification [J]. AIP Advances, 2011, 1:041703. 被引量:1
  • 6Starr C. Physics, 1936, 7:1. 被引量:1
  • 7Terraneo M, Peyrard M, Casati G. Controlling the En- ergy Flow in Nonlinear Lattices: a Model for a Thermal Rectifier [J]. Physical Review Letters, 2002, 88:094302. 被引量:1
  • 8HU Jiuning, RUAN Xiulin, CHEN Yong P. Thermal Con- ductivity and Thermal Rectification in Graphene Nanorib- bons: a Molecular Dynamics Study [J]. Nano Letters, 2009, 9:2730-2735. 被引量:1
  • 9YANG Ping, LI Xialong, ZHAO Yanfan, et al. Effect of Triangular Vacancy Defect on Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons [J]. Physics Letters A, 2013, 377(34-36): 2141 -2146. 被引量:1
  • 10Alaghemandi M, Algaer E, Bohm M C, et al. The Thermal Conductivity and Thermal Rectification of Carbon Nan- otubes Studies Using Reverse Non-Equilibrium Molecu- lar Dynamics Simulations [J]. Nanotechnology, 2009, 20: 115704. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部