期刊文献+

Piella像素级多分辨率图像融合框架的扩展及其算法 被引量:10

Extension of Piella pixel-level multiresolution image fusion framework and its algorithm
下载PDF
导出
摘要 为了优化加权多分辨率图像融合的算法结构,在Piella像素级多分辨率图像融合框架基础上,提出一种只用匹配测度控制决策模块的加权多分辨率图像融合扩展模式,改变了传统加权多分辨率图像融合模式必须由活性测度和匹配测度共同决定决策因子的格局。相对于传统模式,提出的扩展模式去除了活性测度,相应的算法结构更为简单。以相关信号强度比作为匹配测度,给出了一种基于扩展模式的加权多分辨率图像融合算法。对红外和可见光图像的融合实验表明,该算法融合性能优于传统加权多分辨率图像融合算法,其边缘融合质量指标(EFQI)和加权融合质量指标(WFQI)分别提高了2.9%和1.8%;而且计算复杂度更低,计算决策因子所需的乘法和加法运算次数分别减少了66.7%和33.3%。 To optimize the architecture of weighted average multiresolution image fusion algorithm, an extended weighted average multiresolution image fusion model to control the decision map only with the match measure is presented based on the Piella pixel-level multiresolution image fusion framework. The extended model changes the fusion pattern that the decision factor must be decided by both activity measure and match measure in the conventional weighted average multiresolution image fusion model. Since the activity measure is removed in the extended model, the corresponding algorithm architecture is rather simpler. By taking the correlated signal intensity ratio as the match measure, a weighted average multiresolution image fusion method based on the extended model is proposed. The experiment on fusing infrared and visible images shows that the proposed method is able to produce better fusion results than the conventional ones and its Edge Fusion Quality Index(EFQI) and Weight Fusion Quality Index(WFQI)has increased by 2.9% and 1.8%, respectively. Moreover, it achieves much lower computational complexity for the decision factor with decreased multiplication and addition times of 66.7G and 33.3%, respectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第12期2773-2780,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60507003) 科技部国际合作项目(No.2011DFA50590)
关键词 Piella框架 多分辨率图像融合 匹配测度 活性测度 Piella framework multiresolution image fusion match measure activity measure
  • 相关文献

参考文献13

  • 1PIELLA G. A general framework for multiresolution image fusion: From pixels to regions [J]. Information Fusion, 2003, 4(4) :259-280. 被引量:1
  • 2ZHANG Z, BLUM R S. A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application[J]. IEEE, 1999, 87(8):1315-1326. 被引量:1
  • 3BURT P J, KOLCZYNSKI R J. Enhanced image capture through fusion [C]. The 4th International Conference on Computer Vision, Berlin, Germany: 1993:173-182. 被引量:1
  • 4GOOITZEN V D W. Technical overview of the sarnoff acadia II vision processor[J]. SPIE, 2010, 7710:771000-1-77100O-12. 被引量:1
  • 5DAVID B, GOOITZEN V D W. Implementing real time imaging systems using the sarnoff acadia II vision processor[J]. SPIE, 2010, 7710: 77100T-1- 77100T-12. 被引量:1
  • 6李光鑫,徐抒岩.适于图像融合的快速颜色传递方法[J].光学精密工程,2009,17(9):2301-2310. 被引量:7
  • 7李光鑫,王珂,张立保.加权多分辨率图像融合的快速算法[J].中国图象图形学报,2005,10(12):1529-1536. 被引量:13
  • 8PU T, NI G. Contrast-based image fusion using the discrete wavelet transform [J]. Optical Engineering, 2000, 39(8): 2075-2082. 被引量:1
  • 9LI H, MANJUNATH B S, MITRA S K. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Processing, 1995,57(3) :235-245. 被引量:1
  • 10DAUBECHIES I. Ten Lectures on Wavelets [M]. Philadelphia, PA: SIAM, 1992. 被引量:1

二级参考文献46

  • 1李光鑫,王珂,张立保.加权多分辨率图像融合的快速算法[J].中国图象图形学报,2005,10(12):1529-1536. 被引量:13
  • 2李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117. 被引量:51
  • 3SMITH M I, HEATHER I P. Review of image fusion technology in 2005[J].SPIE, 2005,5782:29- 45. 被引量:1
  • 4SCRIBNER D A, SCHULER J M, WARREN P R, et al.. Infrared color vision:separating objects from backgrounds[J].SPIE, 1998,3379:2 -13. 被引量:1
  • 5MCDANIEI. R V, SCRIBNER D A, KREBS W K, etal.. Image fusion for tactical applications[J]. SPIE, 1998,3436 :685-695. 被引量:1
  • 6MCCARLEY J S, KREBS W K. Visibility of road hazards in thermal, visible, and sensor-fused night time imagery [J].Applied Ergonomics, 2000,31 (5) :523-530. 被引量:1
  • 7TOET A, WALRAVEN J. New false color map ping for image fusion [J]. Optical Engineering, 1996,35(3) :650-658. 被引量:1
  • 8WAXMAN A M, AGUILAR M, FAY D A, et al.. Solid-state color night vision: fusion of lowlight visible and thermal IR imagery [J]. Lincoln Lab. J., 1998,11(1):41-60. 被引量:1
  • 9AGUILAR M, FAY D A, ROSS W D, et al.. Re al-time fusion of low-light CCD and uncooled IR im agery for color night vision [J]. SPIE, 1998,3364 :124-135. 被引量:1
  • 10FAY D A, WAXMAN A M, AGUILD M, etal.. Fusion of multi-sensor imagery for night vision: color visualization, target learning and search [C]. The 3rd International Conference on Information Fusion, 2000,1:TuD3- 3-10. 被引量:1

共引文献18

同被引文献86

引证文献10

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部