期刊文献+

基于MIKE 11 Ecolab模型的梁滩河流域水污染问题探讨 被引量:23

Research on Water Pollution Problem of Liangtanhe Basin Based on MIKE 11 Ecolab Model
下载PDF
导出
摘要 基于MIKE 11 Ecolab模型构建了梁滩河流域水文、水动力和水质综合数学模型,分析了该流域河道的水质时空变化特征,研究了不同预案对该流域水质变化趋势及水质改善的效果。结果表明,生活污水的处理应是未来梁滩河流域治理的重点,应降低该流域水体的氨氮浓度,关注水体中总氮、总磷的含量,生活污水处理应采用集中和分散处理相结合的原则。 Based on MIKE 11 Ecolab model, we build hydrological, hydrodynamic and water quality integrated model in Liangtanbe basin. And then it analyzes temporal and spatial characteristics of river channel water quality. Moreover, the effect of water quality changes and improvement is studied according to different eounterplans. The results show that dealing with domestic wastewater is the key point of pollution control in Liangtanhe basin in the future; it is necessary to reduce ammonia nitrogen concentration of rivers and control total nitrogen and total phosphorus of water body; it is better to combine centralized treatment and decentralized treatment to deal with domestic wastwater.
出处 《水电能源科学》 北大核心 2011年第11期33-36,72,共5页 Water Resources and Power
关键词 MIKE 11 Ecolab 水污染 预案研究 梁滩河流域 MIKE 11 Ecolab water pollution counterplan research Liangtanhe basin
  • 相关文献

参考文献6

  • 1吴中如编著..水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003:406.
  • 2Kennedy J,Eberhart R C. Particle Swarm Optimiza- tionEA2. IEEE International Conference on Neural Networks[C]. Perth.. IEEE Service Center, 1995. 被引量:1
  • 3顾冲时,吴中如著..大坝与坝基安全监控理论和方法及其应用[M].南京:河海大学出版社,2006:293.
  • 4Shi Y H,Eberhart R C. A Modified Particle Swarm OptimizerFA~. IEEE International Conference of Evolutionary Computation [C]. Piscataway: IEEE Press,1998. 被引量:1
  • 5吴新杰,李媛,张丹,陶崇娥.PSO算法在多元线性回归分析问题中的应用[J].辽宁大学学报(自然科学版),2007,34(1):18-20. 被引量:8
  • 6李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398

二级参考文献11

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2张志涌 等.精通Matlab 6.5版[M].北京:北京航空航天出版社,2003.. 被引量:109
  • 3Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948. 被引量:1
  • 4Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43. 被引量:1
  • 5Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001. 被引量:1
  • 6Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476. 被引量:1
  • 7Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434. 被引量:1
  • 8Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607. 被引量:1
  • 9Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 10李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:302

共引文献403

同被引文献205

引证文献23

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部