期刊文献+

氮、锰、硫缺乏对蛋白核小球藻Chlorella pyrenoidosa光合产氢及其生长的影响 被引量:2

Effects of nitrogen, manganese, and sulfur deprivation on photo-hydrogen evolution and growth of Chlorella pyrenoidosa
原文传递
导出
摘要 本实验通过研究缺氮、缺锰和缺硫对蛋白核小球藻Chlorella pyrenoidosa产氢的影响,发现缺氮、缺锰及缺硫条件下该藻均能产氢,但在缺氮条件下产氢量最高,约为88.613μL H2/mgChla,分别是对照组、缺锰和缺硫实验组产氢量的4.61倍、1.92倍和3.63倍。通过对光合、呼吸及生长的比较研究,发现缺锰对该藻光合、呼吸及生长的影响要小于缺氮和缺硫;与正常培养条件相比,缺锰、缺硫抑制藻细胞的光合放氧和生长,对呼吸影响小,而缺氮不仅最大程度抑制光合放氧和生长,同时使呼吸作用增强,这为进一步优化该藻产氢条件及研究其产氢机制提供了线索。 We studied the hydrogen evolution (HE) of green alga Chlorella pyrenoidosa grown in normal (nutrients sufficient) media and nitrogen, manganese or sulfur deprived medium. The results showed that photo-hydrogen evolution could occur under all conditions hereinbefore, but the efficiency of HE was maximum under nitrogen deprivation, and the total hydrogen yield was 88.613 μL H2/mg Chla, which was 4.61, 1.92, 3.63 times of control, manganese deprivation, sulfur deprivation groups, respectively. We also measured the growth, the photosynthesis and respiration of the alga. The data demonstrated that manganese deprivation had less influence than nitrogen and sulfur deprivation on the growth, the photosynthesis and respiration of C. pyrenoidosa. Compared with the normal (nutrients sufficient), manganese and sulfur deprivation inhibited the photosynthesis and growth of the alga while bringing small impact on respiration. Nitrogen deprivation, however, greatly restrained the photosynthesis and growth while enhancing the respiration. Those data provide clues for the further study on both the conditions optimization and mechanism of hydrogen evolution.
出处 《生物工程学报》 CAS CSCD 北大核心 2010年第4期489-494,共6页 Chinese Journal of Biotechnology
基金 珠海市科技攻关项目(No.PC20081008)资助~~
关键词 蛋白核小球藻 光合放氧 呼吸 产氢 Chlorella pyrenoidosa photosynthesis respiration hydrogen evolution
  • 相关文献

参考文献22

  • 1梅洪,张成武,殷大聪,耿亚红,欧阳峥嵘,李夜光.利用微藻生产可再生能源研究概况[J].武汉植物学研究,2008,26(6):650-660. 被引量:63
  • 2Happe T, Hemschemeier A, Winkler M, et al. Hydrogenases in green algae: do they save the algae's life and solve our energy problems? TRENDS Plant Sci, 2002, 7(6): 246-250. 被引量:1
  • 3韩志国,李爱芬,龙敏南,韩博平.微藻光合作用制氢——能源危机的最终出路?[J].生态科学,2003,22(2):104-108. 被引量:14
  • 4Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev, 2001, 25: 455-501. 被引量:1
  • 5Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol, 1942, 26: 219-240. 被引量:1
  • 6Maione TE, Gibbs M. Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomanas reinhardtii. Plant Physiol, 1986, 80: 360-363. 被引量:1
  • 7管英富,邓麦村,虞星炬,金美芳,张卫.4种海洋绿藻光合放氢特征的研究[J].海洋科学,2004,28(9):32-35. 被引量:5
  • 8Nallenbecka PC, Benemannb JR. Biological hydrogen production; fundamentals and limiting processes, Int J Hydrogen Energy, 2002, 27:1185-1193. 被引量:1
  • 9Wykoff DD, Davies JP, Melis A, et al. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol, 1998, 117: 129-139. 被引量:1
  • 10Melis A, Zhang LP, Forestier M, et al. Sustained photobiologieal hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol, 2000, 122: 127-135. 被引量:1

二级参考文献251

共引文献119

同被引文献46

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部