期刊文献+

兴安落叶松材积模型中的异方差研究 被引量:5

Study on heteroscedasticity of Larix gmelini(Rupr.)in volume model
下载PDF
导出
摘要 为进一步提高兴安落叶松材积模型估计精度,文章选择V=aDbHc为材积模型形式,对模型的异方差性进行了研究。文章分别使用了图示法及戈德菲尔特-夸检验方法证实模型中存在较强的异方差性,并分别以因变量,自变量及模型本身构造权函数,以加权回归估计和普通非线性回归估计方法结果进行对比分析。研究结果表明:加权回归估计优于普通非线性回归估计;在构造的众多权函数中,以权函数1/D2H为最优;并进一步证实不同的模型有不同的最优权函数形式。 This paper study heteroscedasticity of I.arix gmelini(Rupr. )volume model with for improving estimate precision on the model. The heteroscedasticity was affirmed in volume model using cartography and Goldfeld--Quandt test, and weigh ting function was made from independent variable, attributive variable and model, and weighting regression was a contrast to u sual nonlinear regression. Study results show that weighting regression was better with usual nonlinear regression; 1/ D2H was had best to so; and it was proved that various model had different optimal weighting function form.
机构地区 西南林学院
出处 《山东林业科技》 2010年第2期14-17,共4页 Journal of Shandong Forestry Science and Technology
基金 云南省教学名师项目资助
关键词 兴安落叶松 材积模型 异方差 权函数 Larix gmelini(Rupr. ) volume model Heteroscedasticity Weighting funetion
  • 相关文献

参考文献5

二级参考文献24

共引文献94

同被引文献63

  • 1冯仲科,徐祯祥,王小昆,孔维鹤.测定立木材积的改进形点法[J].北京林业大学学报,2005,27(5):87-91. 被引量:9
  • 2曾伟生.国家森林资源连续清查中的材积估计问题探讨[J].中南林业调查规划,2007,26(2):1-3. 被引量:24
  • 3吴明山,胥辉.思茅松树高曲线方程中的异方差研究[J].林业调查规划,2007,32(2):1-3. 被引量:2
  • 4Manning M J,Francis M.Age and growth of blue shark(Prionace glauca)from the New Zealand Exclusive Eco-nomic Zone,ISSN 1175-1584[R].2005. 被引量:1
  • 5Andrade H A,Kinas P G.Growth models for the skipjacktuna(Katsuwonus pelamis)caught in the southeastern coastof south America[C]//ICCAT Coll Vol Sci Papers,2003:1916-1925. 被引量:1
  • 6Vigliola L,Meekan M G.The back-calculation of fish growthfrom otoliths[C]//Green B S,et al.Tropical fish otoliths:In-formation for assessment,management and ecology,reviews:methods and technologies in fish biology and fisheries,NewYork:Springer,2009:174-271. 被引量:1
  • 7Lim C,Sen P K,Peddada S D.Statistical inference in nonli-near regression under heteroscedasticity[J].Sankhya B,2010,72:202-218. 被引量:1
  • 8Kimura D K.Testing nonlinear regression parameters underheteroscedastic,nromally distributed errors[J].Biometrics,1990,46(3):697-708. 被引量:1
  • 9Quinn II T J,Deriso R B.Quantitative fish dynamics[M].New York:Oxford University Press,1999:128-204. 被引量:1
  • 10Myung I J.Tutorial on maximum likelihood estimation[J].JMath Psychol,2003,47:90 100. 被引量:1

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部