期刊文献+

基于核聚类算法和模糊Markov随机场模型的脑部MR图像的分割 被引量:9

A Kernelized Fuzzy C-means Clustering Using Fuzzy Markov Random Field Model for Brain MR Image Segmentation
下载PDF
导出
摘要 为了更有效地对被噪声污染的脑部MR图像进行分割,提出了一种基于模糊核聚类和模糊Markov随机场的脑部MR图像分割算法。该算法在使用高斯径向基函数的核聚类目标函数中,引入了基于Markov随机场的补偿项,作为分割算法的空间约束。这种空间补偿项用Gibbs分布描述,实际上是一种归一化的核函数,其和用来度量灰度特征的核函数的形式是相似的,并且这种空间约束利用了分割结果的模糊信息。这种基于核函数和Markov随机场模型的算法克服了传统聚类以及核聚类算法的缺陷,不仅提出了更加合理的空间约束,而且改善了原有的分割模型,因此可以得到更加分段光滑的聚类结果。通过对合成图像、模拟MR图像以及临床MR图像进行的分割实验以及和标准分割结果的比较表明,该算法优于相关算法,可以有效地分割被污染的MR图像。 In order to more effectively segment noise-corrupted brain MRI images, a kernelized clustering algorithm using fuzzy Markov random field (MRF) model is proposed. The proposed algorithm is implemented by incorporating the MRF based spatial constraints as a regularization term to the objective function of the kernelized fuzzy C-means clustering ( FCM). The spatial connectivity modeled by the Gibbs distribution is actually formulated as a normalized Gaussian radius basis function (GRBF) , and very similar to the kernel function used to measure the intensity feature of image data. Due to the introduction of fuzzy information in the spatial constraints, the MRF and GRBF based clustering algorithm improves the segmentation model and usually outperforms the conventional intensity based FCM method and the corresponding kernelized clustering method. The modified algorithm can incline the solution to a piecewise smoother segmentation result. Experiments on synthetic data, simulated and real clinical MR images and the result comparisons with ground truth show the proposed algorithm is superior to its rivals and is effective to segment MR data corrupted by noise.
作者 廖亮 林土胜
出处 《中国图象图形学报》 CSCD 北大核心 2009年第9期1732-1738,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60472006) 广东省自然科学基金团队项目(04205783)
关键词 MR图像分割 核聚类算法 模糊Markov场 空间约束 MR image segmentation, kernelized clustering, fuzzy Markov random field, spatial constraints
  • 相关文献

参考文献12

  • 1Liew A W C ,Leung S H ,Lau W H. Fuzzy image clustering incorporating spatial continuity [ J ]. IEE Proceedings-Vision Image and Signal Processing, 2000, 147(2) : 185-192. 被引量:1
  • 2Liew A W C, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [ J]. IEEE Transactions on Medical Imaging, 2003, 22(9): 1063-1075. 被引量:1
  • 3Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C- means algorithm for bias field estimation and segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 2002, 21 (3) : 193-199. 被引量:1
  • 4Pham D L. Fuzzy clustering with spatial constraints [ A ]. In: Proceedings of IEEE International Conference in Image Processing [C] , New York, USA, 2002: 65-68. 被引量:1
  • 5Zhang D Q, Chen S C. A novel kernelized fuzzy C-means algorithm with application in medical image segmentation [ J ]. Artificial Intelligence in Medicine, 2004, 32( 1 ) : 37-50. 被引量:1
  • 6Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(4) : 1907-1916. 被引量:1
  • 7Muler K R, Mika S, Ratsch G, et al. An introduction to kernelbased learning algorithms [ J ]. IEEE Transactions on Neural Networks, 2001, 12(2) : 181-201. 被引量:1
  • 8Kim D W, Lee K Y A, Lee D, et al. A kernel-based subtractive clustering method [ J]. Pattern Recognition Letters, 2005, 26 (7) : 879-891. 被引量:1
  • 9Girolami M. Mercer kernel-based clustering in feature space [ J]. IEEE Transactions on Neural Networks, 2002, 13 (3) : 780-784. 被引量:1
  • 10颜刚,陈武凡,冯衍秋.广义模糊Gibbs随机场与MR图像分割算法研究[J].中国图象图形学报,2005,10(9):1082-1088. 被引量:13

二级参考文献10

  • 1Pham D L, Prince J L. Adaptive fuzzy segmentation of magenetic resonace images[J]. IEEE Transactions on Medical Imaging, 1999,18(9) : 737 -752. 被引量:1
  • 2Zhang Yong-yue, Michael B, Stephen S. Segmentation of brain images through a hidden Markov random field model and the expectation-maximization algorithm [ J ]. IEEE Transactions on Medical Imaging, 2001,20( 1 ) : 45 -57. 被引量:1
  • 3Liew Alan Wee-Chang, Yan Hong. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [ J ]. IEEE Transactions on Medical Imaging, 2003, 22(9) : 1063 - 1075. 被引量:1
  • 4Zhu Chao-zhe, Jiang Tian-zi. MultiContext fuzzy clustering for separation of brain tissues in magnetic resonance images [ J ].NeuroImage, 2003, 18(3 ): 685 - 696. 被引量:1
  • 5Ahmed M N, Yamany S M. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 2002, 21(3) : 193 - 199. 被引量:1
  • 6Prewer D, Kitchen L J. Soft image segmentation by weighted linked pyramid [ J ]. Pattern Recognition Letters, 2001, 22 (2) : 123 - 132. 被引量:1
  • 7Caillol H, Pieczynski W, Hillion A. Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation [ J ]. IEEE Transactions on Image Processing, 1997, 6(3 ) : 425 -440. 被引量:1
  • 8Caillol H, Hillion A. Fuzzy random fields and unsupervised image segmentation [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(4) : 801.-810. 被引量:1
  • 9Salzenstein F, Pieczynski W. Parameter estimation in hidden fuzzy Markov random fields and images segmentation [ J ]. Graphical Models and Image Processing, 1997, 59(4) : 205 - 220. 被引量:1
  • 10CHEN Wu-fan, LU Xian-qing, CHEN Jian-jun, et al. A New algorithm of edge detection for color image : generalized fuzzy operator[J]. Science in China, 1995, 38(10): 1272 -1280. 被引量:1

共引文献12

同被引文献100

引证文献9

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部