摘要
Ag and Cu filled Chevrel phase MxMo6Te8 (x=1.0, 2.0) samples were synthesized by direct solid state reaction and spark plasma sintering. The electrical and thermal properties were investigated in the temperature range of 300-800 K. The results show that both the electrical and thermal properties are affected by filler atoms. Although the electrical conductivity of MxMo6Te8 is slightly higher than that of state-of-the-art thermoelectric material, such as filled skutterudites, the absolute value of Seebeck coefficient is relatively low. Due to the phonon scattering by the filler atoms, the decrease of the thermal conductivity and the lattice thermal conductivity is obvious. As a result, the dimensionless figure of merit(ZT) is improved over the whole temperature region. The highest ZT value is 0.034 at 800 K for the AgMo6Te8 sample.
Ag and Cu filled Chevrel phase MxMo6Te8 (x=1.0, 2.0) samples were synthesized by direct solid state reaction and spark plasma sintering. The electrical and thermal properties were investigated in the temperature range of 300-800 K. The results show that both the electrical and thermal properties are affected by filler atoms. Although the electrical conductivity of MxMo6Te8 is slightly higher than that of state-of-the-art thermoelectric material, such as filled skutterudites, the absolute value of Seebeck coefficient is relatively low. Due to the phonon scattering by the filler atoms, the decrease of the thermal conductivity and the lattice thermal conductivity is obvious. As a result, the dimensionless figure of merit(ZT) is improved over the whole temperature region. The highest ZT value is 0.034 at 800 K for the AgMo6Te8 sample.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2009年第3期642-645,共4页
Transactions of Nonferrous Metals Society of China
基金
Projects(2007CB607502, 2007CB607503) supported by the National Basic Research Program of China