期刊文献+

一类混合时变时滞混沌神经网络自适应同步研究 被引量:3

Adaptive Synchronization of a Class of Chaotic Neural Networks with Mixed Time-Varying Delays
下载PDF
导出
摘要 基于微分方程的拉萨尔不变集原理和自适应动态反馈控制技术,研究了一类带有完全未知参数和混合时变时滞的混沌神经网络的自适应同步问题,给出了保证两个具有相同结构但具有完全未知参数的时滞混沌神经网络同步的控制律的设计方法.在此自适应控制律的作用下,达到了同步与参数辨识同时进行的目的.所设计的控制律简单,易于实现.仿真示例验证了所提方法的有效性. Based on Lasalle invariance theorem of differential equations and adaptive dynamical feedback technique, the adaptive synchronization of a class of chaotic neural networks with fully unknown parameters and mixed time-varying delays is investigated, and as a result, a welldesigned method is given to ensure the synchronization of two chaotic neural networks which are of the same structure and fully unknown parameters. Under the action of the adaptive control law, the synchronization and parametric identification can be done simultaneously. The controller designed is simple and easy to implement. Simulation examples are given to verify the effectiveness of the proposed method.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期475-478,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60728307) 高等学校博士学科点专项科研基金资助项目(20070145015)
关键词 未知参数 混合时变时滞 混沌神经网络 自适应同步 参数辨识 unknown parameters mixed time-varying delay chaotic neural network adaptivesynchronization parametric identification
  • 相关文献

参考文献11

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systerms [J]. Physics Review Letter, 1990,64:821 - 824. 被引量:1
  • 2Yang T. Chaotic secure communication systems: history and new results[J ]. Telecommunications Review, 1999,9 ( 4 ) : 597 - 634. 被引量:1
  • 3Milanovie V, Zaghloul M. Synchronization of chaotic neural networks and applications to communications [ J ]. International Journal of Bifurcation and Chaos, 1997, 7 (1):28-31. 被引量:1
  • 4Aihara K, Takabe T, Toyoda M. Chaotic neural network [J]. Physics Letters A, 1990,144(6) :333 - 340. 被引量:1
  • 5He W L, Cao J D. Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters [J]. Physics Letters A, 2008,372(4) :408 - 416. 被引量:1
  • 6Wang K, Teng Z D, Jiang H J. Adaptive synchronization of neural networks with time varying delay and distributed delay [J]. Physica A, 2008,387(2/3) :631 - 642~ 被引量:1
  • 7谢英慧,张化光.一类时滞Ikeda混沌系统的自适应同步研究[J].东北大学学报(自然科学版),2007,28(4):481-484. 被引量:5
  • 8Gilli M. Strange attractors in delayed cellular networks[J]. IEEE Transactions on Circuits and Systems, 1993,40( 11 ) : 849 853. 被引量:1
  • 9Hale J K. Theory of functional differential equations [M]. New York: Springer-Verlag, 1977. 被引量:1
  • 10Li Z, Jiao L C, Lee J J. Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength [J]. Physica A, 2008, 387 (5/6) : 1369 - 1380. 被引量:1

二级参考文献16

  • 1Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64:821-824. 被引量:1
  • 2Yang T.Chaotic secure communication systems:history and new results[J].Telecommunications Review,1999,9(4):597-634. 被引量:1
  • 3Milanovic V,Zaghloul M.Synchronization of chaotic neural networks and applications to communications[J].International Journal of Bifurcation and Chaos,1997,7(1):28-31. 被引量:1
  • 4Carroll T L,Pecora L M.Synchronization chaotic circuits[J].IEEE Transaction Circuits Systems,1991,38:453-456. 被引量:1
  • 5Yang X S,Duan C K,Liao X X.A note on mathematical aspects of drive-response type synchronization[J].Chaos Solitons & Fractals,1999,10(9):1457-1462. 被引量:1
  • 6Bai E W,Lonngren K E.Sequential synchronization of two Lorenz systems using active control[J].Chaos Solitons & Fractals,2000,11(7):1041-1044. 被引量:1
  • 7Yin X H,Ren Y,Shan X M.Synchronization of discrete spatiotemporal chaos by using variable structure control[J].Chaos Solitons & Fractals,2002,14(7):1077-1082. 被引量:1
  • 8Chen S H,Lü J H.Synchronization of an uncertain unified chaotic system via adaptive control[J].Chaos Solitons & Fractals,2002,14(4):643-647. 被引量:1
  • 9Wang Y W,Guan Z H,Xiao J W.Impulsive control for synchronization of a class of continuous systems[J].Chaos,2004,14(1):199-203. 被引量:1
  • 10Li C D,Liao X F,Wong K W.Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication[J].Physica D,2004,194:187-202. 被引量:1

共引文献4

同被引文献17

  • 1于灵慧,房建成.混沌神经网络逆控制的同步及其在保密通信系统中的应用[J].物理学报,2005,54(9):4012-4018. 被引量:22
  • 2王占山,张化光,王智良.一类混沌神经网络的全局同步[J].物理学报,2006,55(6):2687-2693. 被引量:20
  • 3谢英慧,张化光.一类时滞Ikeda混沌系统的自适应同步研究[J].东北大学学报(自然科学版),2007,28(4):481-484. 被引量:5
  • 4Adachi M, Aihara K. Associative dynamics in chaotic neural network. Neural Network ,1997 ; 10(01) : 83-98. 被引量:1
  • 5HE Wangli,CAO Jinde.Adaptive synchronization of a class of chaotic neural networks with known or unknown parame-ters[J].Physics Letters A,2008,372(4):408-416. 被引量:1
  • 6WANG Kai,TENG Zhidong,JIANG Haijun.Adaptive synchronization of neural networks with time-varying delay anddistributed delay[J].Physica A,2008,387(2-3):631-642. 被引量:1
  • 7ZHANG Huaguang,XIE Yinghui,WANG Zhiliang,et al.Adaptive synchronization between two different chaotic neu-ral networks with time delay[J].IEEE Trans Neural Network,2007,18(6):1841-1845. 被引量:1
  • 8LI Zhi,JIAO Licheng,LEE Jujang.Robust adaptive global synchronization of complex dynamical networks by adjustingtime-varying coupling strength[J].Physica A,2008,387(5-6):1369-1380. 被引量:1
  • 9TANG Yang,QIU Runhe,FANG Jianan,et al.Adaptive lag synchronization in unknown stochastic chaotic neural net-works with discrete and disturbed time-varying delays[J].Physics Letters A,2008,372(24):4425-4433. 被引量:1
  • 10SCHUSS Z.Theory and application of stochastic differential equations[M].New York:John Wiley&Sons Inc,1980. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部