摘要
研究多个指标条件下,利用个体决策结果形成群体一致偏好的方法、假设个体有加性效用函数,将个体多指标效用函数表示成单个指标评价函数的加权和,群体指标评价函数表示成个体指标评价函数的加权和.通过协商指标权重、指标评价函数、支付意愿三个参数,成对个体达成双方一致.提出了(n-1)对个体之间达成双方一致,从而得出群体效用函数的决策方法,这种分析框架同样可以扩展到联盟协商一致中.
This paper presents an approach of preference aggregation for solving a multiple attribute group decision making problem, where the outcomes of a decision are measured using multiple attributes. We assume that the individual multiple attribute utility functions are additive, they can be expressed as the weighted sum of single-attribute evaluation functions are in turn weighted sums of individual attribute evaluation functions. The group attribute evaluation functions. The bilateral agreement between a pair of individuals could be on the wight of an attribute, on an attribute evaluation function, or on willingness to pay. Further, Our contribution is to provide decision analytic procedures to show how bilateral agreements among (n -- 1) pairs of individuals are enough to derive the group utility function. Our analytic framework can be extended to consider coaltion agreements.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第6期121-126,共6页
Mathematics in Practice and Theory
基金
广东省自然科学基金(8151064101000007)
关键词
多指标决策
群体决策
偏好集结
加性效用函数
multiple criteria decision making
group decision making
preference aggregation
additive representation