摘要
自然科学与工程中的许多问题都可以转化为非线性方程组的求解问题,牛顿迭代法是重要的一维及多维的迭代技术,其迭代本身对初始点非常敏感.应用超混沌电路系统产生初始点,首次提出了基于超混沌电路的牛顿迭代法求解非线性方程组的新方法.机构综合与近似综合实例表明该方法的正确性与有效性.
Many questions in natural science and engineering are transformed into nonlinear equations to be found, Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess point. For the fwst time, a new method to find all solutions based on utilizing hypemhaotic circuit to obtain locate initial points to find all solutions of the nonlinear questions was proposed. The numerical examples in linkage synthesis and approximate synthesis show that the method is correct and effective.
出处
《湖南文理学院学报(自然科学版)》
CAS
2007年第3期49-51,54,共4页
Journal of Hunan University of Arts and Science(Science and Technology)
基金
湖南省"十一五"重点建设学科(机械设计及理论)(湘教通[2006]180)
湖南省教育厅重点项目资助(04A036)
湖南省科技厅计划项目(2007FJ3030)
湖南省自然科学基金(05JJ40081)
关键词
超混沌电路
机构综合
近似综合
连杆机构
非线性方程组
Hyperchaotic circiut
mechanism synthesis
approximate synthesis
linkage mechanism
nonlinear equations