期刊文献+

一种基于SOM解码的多类支持向量机 被引量:3

Multi-class SVM based on SOM decoding
下载PDF
导出
摘要 提出了一种基于自组织映射(self-organizing map,SOM)解码的多类SVM算法。该方法首先按照纠错输出编码(error correcting output codes,ECOC)训练子SVM二分类器,然后根据训练样本的输出训练SOM网络,得到其最优权值,最后对未知数据进行分类,这样充分考虑到了二分类器的输出置信度,而且有效地克服了同时和多个类别的距离最小的情况。通过对实际的Iris数据和Yale人脸库的分类实验,结果表明,新算法对于解决多类SVM的分类问题是很有效的。 A multi-class SVM algorithm based on SOM decoding is presented. First, the binary SVM classifiers are trained according to the error correcting output codes (ECOC). Then the SOM network is trained with the output of the training samples and the optimum weights are obtained. Finally the unknown data is classified. By this method, the confidence of the binary classifiers is completely considered with the case avoided that the same minimum distance to several classes is obtained. The experimental results on the Iris data set and Yale face database show that the new algorithm is feasible for the multi-class SVM.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第9期1447-1450,共4页 Systems Engineering and Electronics
基金 国防预研基金资助课题(51407030103DZ0117)
关键词 多类支持向量机 解码算法 纠错输出编码 自组织映射 multi-class support vector machines decoding method error correcting output codes self-organizing map
  • 相关文献

参考文献8

  • 1Vapnik V N. The nature of statistical learning theory[M]. N. Y. , Springer-Verlag, 1995. 被引量:1
  • 2Hsu Chih-Wei, Lin Chih-Jen. A comparison of methods for multiclass support vector machines [J]. IEEE Trans. on Neural Networks, 2002, 13(2) : 415-425. 被引量:1
  • 3Dietterich T G, Bakiri G. Solving multiclass learning problems via error-correcting output codes[J]. Artificial Intelligence Research, 1995, 3(2): 263-286. 被引量:1
  • 4Rennie J D M, Rifkin R. Improving muhiclass text classification with the support vectormachine[R]. MIT, Tech Rep. , 2001-026. 被引量:1
  • 5Masulli F, Valentini G. Comparing decomposition methods for classification[C]// Brighton: Proc. of International Conference on Knowledge Based Intelligent Engineering Systems and Applied Technologies, 2000(2): 788-791. 被引量:1
  • 6Kohonen T. Self-organizing maps [M]. N.Y. , Springer-Verlag, 1995. 被引量:1
  • 7阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.
  • 8Guo Guodong. Li Stan Z, Chen Kapluk. Face recognition by support vector machines[C]// Proc. of the IEEE International Conference on Automatic Face and Gesture Recognition, 2000:196-201. 被引量:1

同被引文献59

  • 1李建武,魏海周,宋玉龙.ECOC多分类器实现的最小封闭球模型[J].计算机研究与发展,2011,48(S3):22-30. 被引量:1
  • 2蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 3张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 4Sch lkopf B, Smola A, Muller K. -R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [ J ]. Neural Computation, 1998,10(5) :1299 - 1319. 被引量:1
  • 5Dietterich T G, Bakiri G. Solving Multiclass Learning Problem via Error-Correcting Output Codes [ J]. Journal of Artificial Intelligence Research, 1995, 2:263 - 286. 被引量:1
  • 6Mika S, Sch lkopf B, Smola A, et al. Kernel PCA and De - noising in Feature Spaces[J].In Advances in Neural Information Processing Systems, 1999,11 : 536 - 542. 被引量:1
  • 7T G Dietterich, G Bakiri. Solving. Multi-class learning problemsvia error-correcting output codes[J] .Journal of Artificial Intel- ligence Research, 1995,34 ( 2 ) : 263 - 286. 被引量:1
  • 8T G Dietterich,G Bakiri, Error-correcting output codes:A gen- eral method for improving multiclass inductive learning pro- grants[A]. Proceedings of the Ninth National Conference on Artificial Intelligence[C]. Menlo Park, San Francisco: AAAI, 1991.572 - 577. 被引量:1
  • 9T G Dietterich, E Kong. Error correcting output codes corrects bias and variance[A]. Proceedings of the 21th Intemafional Conference on Machine Learning[C]. San Francisco: AAAI, 1995.313 - 321. 被引量:1
  • 10F MasuUi G Valentini. Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines [J]. Pattern Anal Applic, 2003,65(6) :285 - 300. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部