摘要
讨论由已知的真空引力场解生成含有电磁场解问题,并求出静电势和静磁势.首先利用双曲复数将Chandraskhar的含有带电体的引力场方程化成双曲Ernst方程,这样可以利用双曲复数的Ernst解生成静电势、度规.相反还可以用Bonnor的结果求得真空的新解.应用二重复数方法将Catenacci的结果二重化,直接产生静电势和静磁势,并讨论其物理意义.
In this paper, we discuss axisymmetric gravitation field with electromagneticstatic field. Chandraskhar's field equations are changed in to a hyperbolic Ernst equation. The result turn out electrostatic potential and metric. The vacuam metric is given by Bonnor' s consequence. Catenacci ' s result is written in double forms, and electrostatic potential and magneticstatic potential are given. The physic meaning are discussed as well.
出处
《沈阳师范大学学报(自然科学版)》
CAS
2006年第2期161-165,共5页
Journal of Shenyang Normal University:Natural Science Edition
基金
辽宁省教育厅高等学校科学研究计划项目(05L415)
关键词
双曲复函数
轴对称引力场
复Ernst方程
hyperbolic composit function
axisymmetfic gravitational field
double complex Ernst equation