期刊文献+

基于BDD的关联故障树定量分析法研究 被引量:6

On Quantitative Analysis of Coherent Fault Tree Based on BDD
下载PDF
导出
摘要 利用二元决策图(BDD)中的B—割集和节点概率,提出了基于BDD的关联故障树定量分析新算法。推导了故障树顶事件发生概率和绝对失效强度算法公式,将故障树顶事件发生概率和绝对失效强度计算结合起来,避免了复杂的最小割集和不交化求解过程,显著地减少了布尔代数运算量,给出了算法递归步骤。大量的实例分析验证了此算法的工程实用性。 By the B-cut sets and the probabilities of the nodes of Binary Decision Diagrams(BDD),a new quantitative analysis algorithm of coherent fault tree based on BDD is presented in this paper.The formula of the top event probability and unconditional failure intensity of coherent fault tree is derived.The complicated minimal cut sets and the disjoint process solving are avoided by the combination of top event probability and unconditional failure intensity calculations of the fault tree,and the Boolean algebra computation is reduced obviously.The recursion process of the algorithm is given.The engineering practicability of the new algorithm is proven by many examples.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第10期62-63,158,共3页 Computer Engineering and Applications
基金 西北工业大学研究生创业种子基金资助(编号:Z20040002)
关键词 二元决策图 关联故障树 顶事件发生概率 绝对失效强度 最小割集 Binary Decision Diagrams(BDD),coherent Fault tree,top event probability,unconditional failure intensity,minimal cut sets
  • 相关文献

参考文献6

  • 1周经伦,孙权.一种故障树分析的新算法[J].模糊系统与数学,1997,11(3):74-78. 被引量:16
  • 2郭永基编著..可靠性工程原理[M].北京:清华大学出版社;施普林格出版社,2002:257.
  • 3Karen A R,Andrews J D.A fault tree analysis strategy using binary decision diagrams[J].Reliability Engineering and System Safety,2002;78:45~56. 被引量:1
  • 4Sinnamon R M,Andrews J D.Improved Accuracy in Quantitative Fault Tree analysis[J].Quality and Reliability Engineering International,1997; 13: 285~292. 被引量:1
  • 5Jung W S,Han S H,Ha J.A fast BDD algorithm for large coherent fault tree analysis[J].Reliability Engineering and System Safety,2004;83:369~374. 被引量:1
  • 6卢世荣,方逵,周经纶.BDD表示下的部件重要度的计算[J].系统工程与电子技术,1999,21(4):69-72. 被引量:7

二级参考文献2

  • 1梅启智,系统可靠性工程基础,1987年 被引量:1
  • 2Zhang Qin,IEEE Trans Relia,1985年,34卷,4期 被引量:1

共引文献21

同被引文献55

引证文献6

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部