期刊文献+

高速公路RBF神经网络限速控制 被引量:2

RBF Neural Network Control for Speed Limitation on Freeway
下载PDF
导出
摘要 针对高速公路限速控制是一个非线性时变系统、难以用数学模型准确建模这一特点,提出了RBF神经网络控制方法。阐述了RBF神经网络的结构和训练方法,根据高速公路主线上车辆数目以及路面状况、气象条件等信息,建立交通流速度控制RBF神经网络模型,并进行了仿真研究。该网络学习速度快、自适应强,泛化能力好,对交通流限速控制的在线建模具有重要意义。 The control for speed limitation on freeway is a nonlinear and time variable system,it is difficult to model with a mathematical model.A control method based on RBF Neural Network is put forward.The network structure and train algorithm are formulated.The RBF network model for speed limitation of freeway traffic is built according to such information as the number of vehicles on freeway,the performance of road surface,and the weather conditions.Simulation research is also carried out by taking full advantage of a computer.The fast learning ability,strong adaptability,and good generality are of great importance to realize on-line modeling for speed limitation of traffic flow.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第6期194-195,201,共3页 Computer Engineering and Applications
基金 广东省自然科学基金项目(编号:010486)资助
关键词 RBF神经网络 高速公路 速度限制 仿真 RBF neural network,freeway,speed limitation,simulation
  • 相关文献

参考文献5

  • 1袁曾任编著..人工神经元网络及其应用[M].北京:清华大学出版社;南宁,1999:373.
  • 2丛爽.径向基函数网络的功能分析与应用的研究[J].计算机工程与应用,2002,38(3):85-87. 被引量:57
  • 3闻新等编著..MATLAB神经网络仿真与应用[M].北京:科学出版社,2003:330.
  • 4Smulders S.Control of Freeway Traffic Flow by Variable Speed Signs [J].Transportation Research, 1990; 24B (2): 111 ~ 132. 被引量:1
  • 5Krause B.Intelligent Highway by Fuzzy Logic:Congestion Detection and Traffic Control on Multi-Lane Roads with Variable Road Signs [C].In :Proceedings of the 5th IEEE International Conference onFuzzy Systems, 1996:1832~1837. 被引量:1

二级参考文献3

  • 1[1]H Demuth,M Beale. Neural Network Toolbox User's Guide[M].The Math Works Inc, 1997.7 被引量:1
  • 2[2]P D Wasserman.advanced Methods in Neural Computing[M].New York:Van Norstrand Reinhold,1993 被引量:1
  • 3[3]J-S Roger Jang,C-T Sun.Functional Equivalence between radial basis fuction networks and fuzzy inference system[J].IEEE Trans.on Neural Networks, 1993 ;4( 1 ): 156-159 被引量:1

共引文献56

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部