摘要
This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the glass plate,which would be served as an analyzer grating (specimen grating).By GPA the local strain distributions related to the phase difference between the reference grating and analyzer grating for the released stress can be evaluated.A validation test has been conducted on the weld joint of a stainless steel tube and the obtained results demonstrate the ability of the method in measuring the residual strain of curved surface.
This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the glass plate,which would be served as an analyzer grating (specimen grating).By GPA the local strain distributions related to the phase difference between the reference grating and analyzer grating for the released stress can be evaluated.A validation test has been conducted on the weld joint of a stainless steel tube and the obtained results demonstrate the ability of the method in measuring the residual strain of curved surface.
作者
Zhanwei Liu,1,Jiangfan Zhou,1 Xianfu Huang,1 Jian Lu,2 and Huimin Xie 3,1) Department of Mechanics,School of Astronautics,Beijing Institute of Technology,Beijing 100081,China 2) Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China 3) AML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China
基金
supported by the National Natural Science Foundation of China (11072033 and 90916010)
Specialized Research Fund for the Doctoral Program of Higher Education (20090002110048)