期刊文献+

A SEMI-ANALYTICAL AND SEMI-NUMERICAL METHOD FOR SOLVING 2-D SOUND-STRUCTURE INTERACTION PROBLEMS 被引量:8

A SEMI-ANALYTICAL AND SEMI-NUMERICAL METHOD FOR SOLVING 2-D SOUND-STRUCTURE INTERACTION PROBLEMS
下载PDF
导出
摘要 Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use. Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.
出处 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期116-126,共11页 固体力学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10172038)
关键词 sound-structure interaction acoustic radiatlon multi-circular virtual source simulation technique transfer matrix method inverse fast Fourier transformation semi-analytical and semi-numerical method sound-structure interaction acoustic radiatlon multi-circular virtual source simulation technique transfer matrix method inverse fast Fourier transformation semi-analytical and semi-numerical method
  • 相关文献

同被引文献62

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部