期刊文献+

基于决策树的社交网络隐式用户行为数据挖掘方法

Data mining method based on decision tree for implicit user behavior in social network
下载PDF
导出
摘要 为了解决社交网络隐式用户行为数据挖掘过程中关联相似性计算较为困难的问题,提出了基于决策树的社交网络隐式用户行为数据挖掘方法。将社交网络视为包含不同维度的向量空间,计算特定维度上用户的兴趣空间和兴趣点。确定样本属性集后,根据已知行为数据建立测试分支,计算该分支下子集的属性权重,不断迭代直至挖掘到同等属性的数据点为止。测试结果表明:该方法可对不同种类隐式用户行为精准挖掘,目标行为数据查找效果较好,实用性较强。 In order to solve the problem of social network that it is difficult to calculate the association similarity in the process of data mining for implicit user behavior,a data mining method based on decision tree for implicit user behavior in social network was proposed.Social network was regarded as a vector space containing different dimensions,and users′ interest space and interest points on specific dimensions were calculated.After determining the sample attribute set,the test branch was established according to the known behavior data,and the attribute weight of branch subset was calculated.In addition,it was iterated until the data points with the same attributes were mined.Test results show that the as-proposed method can ensure accurate mining in the face of different types of implicit user behavior,and the search for target behavior data is effective and practical.
作者 韩永印 王侠 王志晓 HAN Yongyin;WANG Xia;WANG Zhixiao(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,Jiangsu,China;School of Information Engineering,Xuzhou College of Industrial Technology,Xuzhou 221140,Jiangsu,China)
出处 《沈阳工业大学学报》 CAS 北大核心 2024年第3期312-317,共6页 Journal of Shenyang University of Technology
基金 国家自然科学基金面上项目(61876186) 徐州市科技计划项目(KC21300)。
关键词 决策树 社交网络 隐式用户行为 向量空间 属性集 数据挖掘 权重值 属性元素 decision tree social network implicit user behavior vector space set of properties data mining weight value attribute element
  • 相关文献

参考文献16

二级参考文献134

  • 1杨捷,李沛霖,罗成臣,洪锋.基于数据挖掘的电网用户行为分析[J].云南大学学报(自然科学版),2020,42(S02):38-43. 被引量:23
  • 2梁天恺,曾碧,刘建圻.基于FP-Growth的智能家居用户时序关联操控习惯挖掘方法[J].计算机应用研究,2020,37(2):385-389. 被引量:9
  • 3刘宴兵,刘飞飞.基于云计算的智能手机社交认证系统[J].通信学报,2012,33(S1):28-34. 被引量:7
  • 4Papacharissi Z. A networked self: identity, communi- ty, and culture on social network sites [ M ]. New York : Routledge, 2011. 被引量:1
  • 5Brainard J, Juels A, Rivest R L, et al. Fourth-factor authentication : somebody you know [ C ]//13 th ACM Conference on Computer and Communications Securi- ty. Virginia,USA,2006 : 168 - 178. 被引量:1
  • 6Henk C A, van Tilborg, Jajodia S. Encyclopedia of cryptography and security [M]. New York: Springer US ,2011. 被引量:1
  • 7al Abdulwahid A,Clarke N, Furnell S, et al. The cur- rent use of authentication technologies: an investigative review [ C]//2015 IEEE International Conference on Cloud Computing. Riyadh, Saudi Arabia ,2015 : 1 - 8. 被引量:1
  • 8Javed A, Bletgen D, Kohlar F, et al. Secure fallback authentication and the trusted friend attack [ C]//2014 IEEE 34th International Conference on Distributed Computing Systems Workshops. Madrid, Spain ,2014: 22 - 28. 被引量:1
  • 9Schechter S,Egelman S, Reeder R W. It' s not what you know, but who you know [ C ]//Proceedings of the 27th ACM SIGCHI Conference on Human Factors in Computing Systems. Toronto, Canada, 2009 : 172 -181. 被引量:1
  • 10Shao C, Chert L, Fan S, et al. Social authentication identity: an alternate to internet real name system [ C ]//International Conference on Security and Priva- cy in Communication Systems. Beijing, China, 2014: 132 - 140. 被引量:1

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部