期刊文献+

变体翼梢小翼的减阻机理数值模拟 被引量:6

Numerical simulation on morphing winglets for its drag reduction mechanisms
原文传递
导出
摘要 总结了对翼梢小翼减阻效果影响最大的几何参数,在此基础上采用数值模拟方法研究了这些几何参数的最佳变化范围,为变体翼梢小翼设计提供理论依据.并从气动性能、气动载荷分布和翼尖涡的角度探讨了变体翼梢小翼相对传统翼梢小翼的优缺点.结果表明:在飞机的起飞阶段,变体翼梢小翼的减阻效率比传统翼梢小翼高2.2%,同时将翼尖涡强度降低了15%,有利于提高飞机的燃油效率和机场空域安全;但也会增大机翼的翼根弯矩,因此必须权衡变体翼梢小翼带来的气动收益与结构强度不利因素. The most critical geometric parameters of winglets in drag reduction efficiency were summarized.Then the numerical simulation method was utilized to reveal the optimal range of these parameters,which is the theoretical basis of morphing winglet design.The advantages and disadvantages of morphing winglets in aerodynamic performance,aerodynamic load distribution and wingtip vortices were discussed compared with traditional winglets. The results show that morphing winglets can increase the drag reduction efficiency by 2.2% compared with traditional winglets and weaken the wingtip vortices by 15%in the takeoffphase of flight.It is beneficial to enhance the fuel efficiency of aircraft and the airport spatial security.However,morphing winglets increase the bending moment at the wing root.For this reason,aircraft designers have to strik a balance between the aerodynamic benefits and the structural disadvantages in morphing winglet designs.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第5期1105-1111,共7页 Journal of Aerospace Power
基金 基金项目:预先研究
关键词 减阻 翼梢小翼 气动载荷 气动性能 翼尖涡 drag reduction winglet aerodynamic load aerodynamic performance wingtip vortices
  • 相关文献

参考文献15

  • 1Anderson J D.Introduction to flight[M].5th ed.New York:McGraw-Hill Science,2004:31-33. 被引量:1
  • 2马汉东,崔尔杰.大型飞机阻力预示与减阻研究[J].力学与实践,2007,29(2):1-8. 被引量:22
  • 3Whitcomb R T.A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets[R].NASA TN D-8260,1976. 被引量:1
  • 4Flechner S G,Jacobs P F,Whitcomb R T.A high subsonic speed wind tunnel investigation of winglets on a representative second-generation jet transport wing[R].NASA TN D-8264,1976. 被引量:1
  • 5江永泉著..飞机翼梢小翼设计[M].北京:航空工业出版社,2009:206.
  • 6Bourdin P,Gatto A,Friswell M I.Aircraft control via variable cant-angle winglets[J].Journal of Aircraft,2008,45(2):414-423. 被引量:1
  • 7Ursache N M,Melin T,Isikveren A T,et al.Morphing winglets for aircraft multi-phase improvement[R].AIAA-2007-7813,2007. 被引量:1
  • 8Gatto A,Mattioni F,Friswell M I.Experimental investigation of bistable winglets to enhance wing lift takeoff capability[J].Journal of Aircraft,2009,46(2):647-655. 被引量:1
  • 9Ameri N,Lowenberg M H,Friswell M I.Modeling the dynamic response of a morphing wing with active winglets[R].AIAA-2007-6500,2007. 被引量:1
  • 10Ursache N M,Melin T,Isikveren A T.Technology integration for active poly-morphing winglets development[R].Smart Materials,Adaptive Structures and Intelligent Systerms,SMASIS-2008-496,2008. 被引量:1

二级参考文献11

  • 1г.C.比施根斯主编.孙荣科等译..干线飞机空气动力学和飞行力学:第1版..北京:航空工业出版社,,1996年5月.... 被引量:1
  • 2Kroo I.Nonplanar wing concepts for increased aircraft efficiency,VKI lecture series on innovative configurations and advanced concepts for future civil aircraft.June 6-10,2005 被引量:1
  • 3Levy DW,Zickuhr T,et al.Summary of Data from the First AIAA CFD Drag Prediction Workshop.AIAA 2002-0841,2002 被引量:1
  • 4Rumsey CL,Rivers SM,et al.Study of CFD Variation on Transport Configurations from the Second Drag-prediction Workshop.AIAA 2004-0394 被引量:1
  • 5Reneaux J.Overview on drag reduction technologies for civil transport aircraft.European Congress on Computational Methods in Applied Sciences and Engineering.ECCOMAS 2004 被引量:1
  • 6Phillips WF,Alley NR,et al.Lifting-line Analysis of Roll Control and Variable Twist.AIAA 2003-4061 被引量:1
  • 7Gad-el-Hak M.Interactive control of turbulent boundary layers:a futuristic overview.AIAA J,1994,32:1753~1765 被引量:1
  • 8Bushnell DM,Hefner JN.Viscous Drag Reduction in Boundary Layers.American Institute of Aeronautics and Astronautics,Washington DC,1990 被引量:1
  • 9Hwang DP.A Proof of Concept Experiment for Reducing Skin Friction by Using a Micro-blowing Technique.AIAA,Paper 97-0546 (NASA TM-107315),1997 被引量:1
  • 10Lee KH,Cortelezzi L,et al.Application of reduced-order controller to turbulent flows for drag reduction.Physics of Fluids,2001,13(5):1321~1331 被引量:1

共引文献21

同被引文献43

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部