期刊文献+

I-fuzzy拓扑中的可数性 被引量:1

Countability in I-fuzzy Topology
下载PDF
导出
摘要 在I-fuzzy拓扑空间中利用R-邻域系给出了I-fuzzy第一可数性、I-fuzzy第二可数性、I-fuzzy稠密性等概念,并进一步讨论了它们之间的关系. In this paper, the concepts of I-fuzzy first countability,I-fuzzy second countability and I-fuzzy density are introduced based on the R-neighborhood structure and the relatiOns Of these concepts are discussed.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2008年第5期596-598,共3页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 内蒙古自然科学基金资助项目(200711020108) 内蒙古师范大学科研基金资助项目(QN06042)
关键词 连续值逻辑 I-fuzzy拓扑 I-fuzzy第一可数性 I—fuzzy第二可数性 I-fuzzy稠密性 Continuous valued logic I- fuzzy topology I- fuzzy first countability I- fuzzy second countability I-fuzzy density
  • 相关文献

参考文献12

  • 1Chang C L. Fuzzy topological space [J]. J Math Anal Appl, 1968,24:182--190. 被引量:1
  • 2Sostak A P. On a fuzzy topological structure [J]. Suppl Rend Circ Mat Palermo, 1985(2):89--103. 被引量:1
  • 3Ying Mingsheng. A new approach for fuzzy topology (Ⅰ) [J]. Fuzzy Sets and Systems,1991,39:303--321. 被引量:1
  • 4Ying Mingsheng. A new approach for fuzzy topology (Ⅱ) [J]. Fuzzy Sets and Systems,t992,47:221--232. 被引量:1
  • 5Ying Mingsheng. A new approach for fuzzy topology (Ⅲ) [J]. Fuzzy Sets and Systems,1993,55 : 193--207. 被引量:1
  • 6李清华,方进明.I-Fuzzy拓扑空间中的可数性[J].模糊系统与数学,2005,19(3):71-75. 被引量:3
  • 7Fang J M. I --FTOP is isomorphic to I --FQN and I --AITOP[J]. Fuzzy Sets and Systems, 2004,147:317--325. 被引量:1
  • 8王瑞英,吉智方,王尚志.I-fuzzy拓扑中的分离公理[J].数学学报(中文版),2007,50(2):311-318. 被引量:10
  • 9王瑞英,吉智方.I-fuzzy拓扑的基和子基[J].内蒙古师范大学学报(自然科学汉文版),2007,36(2):127-129. 被引量:3
  • 10王国俊著..L-fuzzy拓扑空间论[M].西安:陕西师范大学出版社,1988:428.

二级参考文献33

  • 1方进明,岳跃利.Base and Subbase in I-Fuzzy Topological Spaces[J].Journal of Mathematical Research and Exposition,2006,26(1):89-95. 被引量:4
  • 2Fang J M. I- FTOP is isomorphic to I- FQN and I- AITOP[J]. Fuzzy Sets and Systems,2004,147 : 317-325. 被引量:1
  • 3Fang J M, Yue Y L. Base and subbase in I- fuzzy Topological Spaces [J]. J. Math. Res. Exposition,to appear. 被引量:1
  • 4Ying M S. A new approach for fuzzy topology(Ⅰ) [J]. Fuzzy Sets and Systems, 1991, 39:303-321. 被引量:1
  • 5Ying M S. A new approach for fuzzy topology(Ⅱ)[J]. Fuzzy Sets and Systems, 1992, 47:221-232. 被引量:1
  • 6Chang C. L., Fuzzy topological space, J. Math. Anal. Appl., 1968, 24: 182-190. 被引量:1
  • 7Lowen R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 1976, 56: 621-633. 被引量:1
  • 8Hutton B., Products of fuzzy topological spaces, Topology Appl., 1980, 11: 59-67. 被引量:1
  • 9Sostak A. P., On a fuzzy topological structure, Suppl. Rend. Circ. Mat Palermo Ser. Ⅱ, 1985, 11:89-103. 被引量:1
  • 10Chattopadhysy K. C., Hazra R. N., Samanta S. K., Gradation of opennes: fuzzy topology, Fuzzy Sets and Systems, 1992, 49: 237-242. 被引量:1

共引文献11

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部