期刊文献+

基于多尺度特征实现超参进化的野生菌分类研究与应用 被引量:1

Research and application of wild mushrooms classification based on multi-scale features to realize hyperparameter evolution
下载PDF
导出
摘要 在我国,因误食不可食用野生菌而导致中毒的事件频发,尤其是云南等西南地区,由于野生菌种类的类间特征差异较小,且实际场景下的图像背景复杂,仅靠肉眼分辨困难。目前虽然有多种方法可对野生菌进行分类,且最为可靠的方法为分子鉴定法,但该方法耗时长、门槛高,不适合进行实时分类检测。针对这一问题,提出了一种基于深度学习的方法,即使用注意力机制(CBAM),配合多尺度特征融合,增加Anchor层,利用超参数进化思想对其模型训练时的超参数进行调整,从而提升识别精度。与常见的目标检测网络SSD,Faster_Rcnn和Yolo系列等进行对比,该模型能更准确地对野生菌进行分类检测;经过模型改进后,相较于原Yolov5,Map提升3.7%,达到93.2%,准确率提升1.3%,召回率提升1.0%,且模型检测速度提升2.3%;相较于SSD,Map提升14.3%。最终将模型简化,部署到安卓设备上,增加其实用性,解决当前因野生菌难以辨别而误食不可食用野生菌导致中毒的问题。 In China,there are frequent poisoning events caused by ingestion of inedible wild mushrooms every summer,especially in Southwest China,such as Yunnan.This is due to the slight differences in inter-class characteristics of wild mushrooms and the complex image backgrounds in actual scenarios,making it difficult to distinguish only by naked eyes.At present,although there are many methods to classify wild mushrooms,and the most reliable way is molecular identification,the relevant techniques are time-consuming and require a high threshold,so they are not suitable for real-time classification and detection.To solve this problem,an approach based on deep learning was proposed.This approach employed the attention mechanism convolution block attention module(CBAM),was combined with multi-scale fusion,and added the anchor layer.The hyperparameter evolution idea was adopted to adjust the hyperparameter during the model training,so as to improve the recognition accuracy.Compared with standard target detection networks,such as SSD,Faster Rcnn,and Yolo series,the proposed model can classify and detect wild mushrooms more accurately.Compared with the original Yolov5,after the proposed model was improved,Map was improved by 3.7%and reached 93.2%,precision by 1.3%,Recall by 1.0%,and model detection speed by 2.3%.Compared with SSD,Map was improved by 14.3%.Finally,the model was simplified and deployed on Android devices to increase its practicability,thus solving the current problem of poisoning caused by eating inedible wild mushrooms because of the difficulty of identification.
作者 张盾 黄志开 王欢 吴义鹏 王颖 邹家豪 ZHANG Dun;HUANG Zhi-kai;WANG Huan;WU Yi-peng;WANG Ying;ZOU Jia-hao(School of Information Engineering,Nanchang Institute of Technology,Nanchang Jiangxi 330000,China;School of Mechanical Engineering,Nanchang Institute of Technology,Nanchang Jiangxi 330000,China)
出处 《图学学报》 CSCD 北大核心 2022年第4期580-589,共10页 Journal of Graphics
基金 国家重点研发计划项目(2019YFB1704502) 国家自然科学基金项目(61472173) 江西省教委资助项目(GJJ151134)。
关键词 计算机应用 卷积神经网络 多尺度特征 超参数进化 注意力机制 可食用野生菌 目标检测 computer application convolutional neural network multi scale features hyperparameter evolution attention mechanism edible wild mushrooms target detection
  • 相关文献

参考文献15

二级参考文献93

共引文献65

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部