期刊文献+

基于优化DeepSort的前方车辆多目标跟踪 被引量:23

Multi-target tracking of vehicles based on optimized DeepSort
下载PDF
导出
摘要 为了提升自动驾驶汽车对周边环境的感知能力,提出优化DeepSort的前方多车辆目标跟踪算法.采用Gaussian YOLO v3作为前端目标检测器,基于DarkNet-53骨干网络训练,获得专门针对车辆的检测器Gaussian YOLO v3-vehicle,使车辆检测准确率提升3%.为了克服传统预训练模型没有针对车辆类别的缺点,提出采用扩增后的VeRi数据集进行重识别预训练.提出结合中心损失函数与交叉熵损失函数的新损失函数,使网络提取的目标特征有更好的类内聚合以及类间分辨能力.试验部分采集不同环境的实际道路视频,采用CLEAR MOT评价指标进行性能评估.结果表明,与基准DeepSort YOLO v3相比,跟踪准确度提升1%,身份切换次数减少4%. A front multi-vehicle target tracking algorithm optimized by DeepSort was proposed in order to improve the awareness of autonomous vehicles to the surrounding environment.Gaussian YOLO v3 model was adopted as the front-end target detector,and training was based on DarkNet-53 backbone network.Gaussian YOLO v3-Vehicle,a detector specially designed for vehicles was obtained,which improved the vehicle detection accuracy by 3%.The augmented VeRi data set was proposed to conduct the re-recognition pre-training in order to overcome the shortcomings that the traditional pre-training model doesn't target vehicles.A new loss function combining the central loss function and the cross entropy loss function was proposed,which can make the target features extracted by the network become better in-class aggregation and inter-class resolution.Actual road videos in different environments were collected in the test part,and CLEAR MOT evaluation index was used for performance evaluation.Results showed a 1%increase in tracking accuracy and a 4%reduction in identity switching times compared with the benchmark DeepSort YOLO v3.
作者 金立生 华强 郭柏苍 谢宪毅 闫福刚 武波涛 JIN Li-sheng;HUA Qiang;GUO Bai-cang;XIE Xian-yi;YAN Fu-gang;WU Bo-tao(School of Vehicle and Energy,Yanshan University,Qinhuangdao 066004,China;Hebei Key Laboratory of Special Delivery Equipment,Yanshan University,Qinhuangdao 066004,China;Transportation College,Jilin University,Changchun 130022,China;Department of Automotive Engineering,Hebei Institute of Mechanical and Electrical Technology,Xingtai 054000,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第6期1056-1064,共9页 Journal of Zhejiang University:Engineering Science
基金 国家重点研发计划资助项目(2018YFB1600501) 国家自然科学基金资助项目(52072333) 国家自然科学基金区域创新发展联合基金资助项目(U19A2069) 河北省省级科技计划资助项目(20310801D,E2020203092,F2021203107).
关键词 自动驾驶 环境感知 深度学习 优化DeepSort算法 目标跟踪 autonomous vehicle environment perception deep learning optimized DeepSort algorithm object tracking
  • 相关文献

参考文献5

  • 1王世峰,戴祥,徐宁,张鹏飞.无人驾驶汽车环境感知技术综述[J].长春理工大学学报(自然科学版),2017,40(1):1-6. 被引量:58
  • 2李玺,查宇飞,张天柱,崔振,左旺孟,侯志强,卢湖川,王菡子.深度学习的目标跟踪算法综述[J].中国图象图形学报,2019,24(12):2057-2080. 被引量:111
  • 3储琪..基于深度学习的视频多目标跟踪算法研究[D].中国科学技术大学,2019:
  • 4解耘宇..基于扩展卡尔曼滤波的单目视觉轨迹跟踪方法的研究[D].华北电力大学,2017:
  • 5刘鑫辰..城市视频监控网络中车辆搜索关键技术研究[D].北京邮电大学,2018:

二级参考文献4

共引文献167

同被引文献154

引证文献23

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部