期刊文献+

空洞卷积的多尺度语义分割网络 被引量:11

Multiscale Semantic Segmentation Network Based on Cavity Convolution
下载PDF
导出
摘要 计算机硬件的发展极大程度地促进了计算机视觉的发展,卷积神经网络在语义分割中取得了令人瞩目的成就,但多卷积层叠加难免造成图像中目标边界信息的丢失。为了尽可能保留边界信息,提高图像分割精度,提出一种多尺度空洞卷积神经网络模型。该模型利用多尺度池化适应图像中不同尺度目标,并利用空洞卷积学习目标特征,在更加准确识别目标的同时,提高目标边界的识别精度,在ISPRS Vaihingen数据集上的实验结果表明,提出的多尺度空洞卷积神经网络对于目标边界的拟合结果较为理想。 The development of computer hardware has greatly promoted the development of computer vision.Convolution neural network has made remarkable achievements in semantic segmentation.However,the stacking of multiple convolutional layers inevitably result in the loss of detailed information in the boundary of objects.In order to preserve boundary information as far as possible and improve the accuracy of image segmentation,a multiscale atrous convolution neural network model is proposed.The proposed model utilizes multiscale pooling to adapt to different scale targets in images.Besides,atrous convolution layer is used to learn target features,thus the accuracy of detailed information is improved,better segmentation results are obtained.Experimental results on the ISPRS Vaihingen dataset show that the proposed multiscale atrous convolution neural network is effective for target boundary fitting.
作者 曲长波 姜思瑶 吴德阳 QU Changbo;JIANG Siyao;WU Deyang(Liaoning Technical University,Huludao,Liaoning 125105,China;Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第24期91-95,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.71771111)
关键词 深度学习 语义分割 空洞卷积 多尺度 deep learning semantic segmentation cavity convolution multiscale
  • 相关文献

参考文献12

二级参考文献132

  • 1杨三序.电容式传感器在车辆检测装置中的应用[J].传感器技术,2004,23(9):74-76. 被引量:3
  • 2史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 3罗庆洲,尹球,匡定波.光谱与形状特征相结合的道路提取方法研究[J].遥感技术与应用,2007,22(3):339-344. 被引量:40
  • 4LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J] . Neural Computation, 1989, 1(4):541-551. 被引量:1
  • 5Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C] //Proc of NIPS. 2012. 被引量:1
  • 6Taigman Y, Yang Ming, Ranzato M A, et al. Deepface:closing the gap to human-level performance in face verification[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. [S. l.] :IEEE Press, 2014:1701-1708. 被引量:1
  • 7Fan Haoqiang, Cao Zhimin, Jiang Yuning, et al. Learning deep face representation[J] . arXiv preprint arXiv:1403. 2802, 2014. 被引量:1
  • 8Ma Xiaoxu, Grimson W E L. Edge-based rich representation for vehicle classification[C] //Proc of the 10th IEEE International Confe-rence on Computer Vision. [S. l.] :IEEE Press, 2005:1185-1192. 被引量:1
  • 9Ke Yan, Sukthankar R. PCA-SIFT:a more distinctive representation for local image descriptors[C] //Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.] :IEEE Press, 2004:II-506-II-513. 被引量:1
  • 10Ge Fengxiang, Shi Yishu, Sun Bo, et al. Sparse representation based classification by using PCA-SIFT descriptors[C] //Proc of the 4th IEEE International Conference on Information Science and Technology. [S. l.] :IEEE Press, 2014:429-432. 被引量:1

共引文献278

同被引文献74

引证文献11

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部