期刊文献+

基于卷积神经网络的遥感图像目标检测 被引量:31

Object Detectionin of Remote Sensing Images Based on Convolutional Neural Networks
原文传递
导出
摘要 针对遥感图像中的目标检测问题,采用基于卷积神经网络的目标检测框架对目标进行提取,针对该网络制作了包含三类遥感图像中常见目标的目标检测数据集。为了解决遥感图像目标旋转角度较大的问题,将空间变换网络融入超快区域卷积神经网络,提出了一种具有旋转不变性自学习能力的目标检测模型。通过与传统的目标检测方法进行对比分析,探究了不同方法对遥感图像目标检测的实际效果。相对于传统的目标检测方法,融合了空间变换网络的卷积神经网络所提取的特征具有更好的旋转不变特性,从而能够达到更高的检测精度。 Aiming at the problem of object detection in remote sensing images, the Faster-Rcnn network based on the convolutional neural network models is used to extract the features of the object area. An object detection dataset containing three kinds of common targets in remote sensing images is made to train this network. In addition, in order to solve the problem of large rotation angle of remote sensing images, a target detection model with a rotation invariance self-learning ability is proposed, which integrates the spatial transformation network into the Faster R-CNN framework. By the analysis and comparison with the traditional object detection methods, the true effects of object detection in remote sensing images by different methods are explored. The features extracted by the convolutional neural networks based on the spatial transformation networks possess stronger orientation robustness than those by the traditional methods, which makes it possible to obtain a high detection precision.
作者 欧攀 张正 路奎 刘泽阳 Ou Pan;Zhang Zheng;Lu Kui;Liu Zeyang(School of Instrumentation Science and Opto-Electronic Engineering, Beihang University, Beijing 100191, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第5期66-72,共7页 Laser & Optoelectronics Progress
关键词 图像处理 卷积神经网络 空间变换网络 目标检测 深度学习 image processing convolutional neural networks spatial transformation networks object detection deep learning
  • 相关文献

参考文献3

二级参考文献14

共引文献90

同被引文献197

引证文献31

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部