期刊文献+

目标空间聚类的差分头脑风暴优化算法 被引量:7

Difference brain storm optimization algorithm based on clustering in objective space
下载PDF
导出
摘要 作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性. As a new kind of swarm intelligence optimization algorithm,brain storm optimization(BSO)has paid more attention of more researchers in different fields.Based on the cluster operation and mutation of original BSO,a novel BSO algorithm named difference brain storm optimization based on clustering in objective space(DBSO–OS)is proposed in this paper to improve the performance of the original BSO algorithm.The clustering operation is designed in objective space which can decrease the computation complexity comparing with clustering in decision space in the proposed algorithm.The difference mutation operation is adopted to increase the diversity of the population.The simulation results of many benchmark functions of different dimensions demonstrate that the proposed algorithm can not only improve the time performance but also the precision.Moreover,the suitable parameter selection strategy is provided on the basis of the parameter analysis of the proposed algorithm.And the combined heat and power economic dispatch(CHPED)are implemented to evaluate the effectiveness of the proposed algorithm.
作者 吴亚丽 付玉龙 王鑫睿 刘庆 WU Ya-li;FU Yu-long;WANG Xin-rui;LIU Qing
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第12期1583-1593,共11页 Control Theory & Applications
基金 国家自然科学基金青年基金项目(61503299 61502385)资助~~
关键词 头脑风暴算法 聚类 差分变异 目标空间 brain storm optimization(BSO) cluster difference mutation objective space
  • 相关文献

参考文献3

二级参考文献19

  • 1李艳君,吴铁军.An adaptive ant colony system algorithm for continuous-space optimization problems[J].Journal of Zhejiang University Science,2003,4(1):40-46. 被引量:20
  • 2Aggarwal JK, Ryoo MS. Human activity analysis: A review [J]. ACM Computing Surveys (CSUR), 2011,43(3) : 16. 被引量:1
  • 3Weber P, Houghton SM, Champion C J, et al. Trajectory a- nalysis of speech using continuous-state hidden markov models [ C ]. //Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing Florence, 2014: 3042 -3046. 被引量:1
  • 4Li Z, Wei Z,Yue Y, et al. An adaptive hidden Markov mod- el for activity recognition based on a wearable multi-sensor de- vice [ J ]. Journal of Medical Systems, 2015, 39 (5) : 1-10. 被引量:1
  • 5Baum LE, Petrie T, Soules G, et al. A maximization tech- nique occurring in the statistical analysis of probabilistic func- tions of Markov chains[ J 1. The Annals of Mathematical Sta- tistics, 1970,41(4): 164-171. 被引量:1
  • 6Zhang Y,Zhao D, Liu J. The Application of Baum-Welch al- gorithm in multistep attack[J]. The Scientific World Journal, 2014,2014 ( 3 ) :435-451. 被引量:1
  • 7Xue L,Yin J, Ji Z, et al. A particle swarm optimization for hidden Markov model training[ C]. //8th International Con- ference on Signal Processing, 2006, 16-20. 被引量:1
  • 8Maldonado YP, Morales SOC, Ortega ROC. GA approaches to HMM optimization for automatic speech recognition [ C ]. //Lecture Notes in Computer Science, Springer Berlin Hei- delberg, 2012, 7329: 313-322. 被引量:1
  • 9Shi Y. Brain storm optimization algorithm [ C ]. //Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, 6728 : 303-309. 被引量:1
  • 10Ramanand K, Krishnanand K, Panigrahi BK, et al. Brain storming incorporated teaching-learning-based algorithm with application to electric power dispatch[ C]. //Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, 7677 : 476-483. 被引量:1

共引文献28

同被引文献49

引证文献7

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部