期刊文献+

含有患病鸟类迁入的禽流感动力学模型

A Mechanical Model of Avian Influenza Infection with Affected Birds
原文传递
导出
摘要 禽流感是一种能够感染人畜的传染性疾病,野生鸟类在禽流感的传播与流行中起到不可忽视的作用.建立常微分方程模型来刻画禽流感在人类及禽类中的动态传播规律.模型包含患病鸟类的迁入,并且禽类和人类数量是可变的.通过构造适当的Liapunov函数及LaSalle不变性原理证明了平衡点的局部及全局稳定性.在病鸟类迁入率不为零时,利用Poincare-Bendixson定理证明了地方病平衡点的全局渐进稳定性.还对模型进行了仿真及敏感性分析,讨论了含患病鸟类的迁入对禽流感流行的影响以及控制禽流感应采取的措施,为控制禽流感疫情提供理论基础. Avian influenza is an infectious disease that can infect human and animals. Wild birds play an important role in the spread and prevalence of avian influenza. In the paper, an ordinary differential equation model is established to characterize the dynamic propagation of avian influenza in humans and birds. The model contains the influx of diseased birds, and the variable of birds and humans. The local and global stability of the equilibrium point is proved by constructing appropriate Liapunov function and LaSalle invariance principle. In the case of sick bird migration rate is not zero, the global asymptotic stability of the equilibrium point of endemic disease is proved by Poincare-Bendixson theorem. In this paper, the simulation and sensitivity analysis of the model were carried out. The influencing factors of avian influenza and the measures to control avian influenza were discussed, which provided the theoretical basis for the control of avian influenza.
作者 任明 高俊莲 徐向阳 REN Ming GAO Jun-lian XU Xiang-yang(Management School, China University of Mining and Technology(Beijing), Beijing 100083, China College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China Center for Resources and Environmental Policy Research, China University of Mining and Technology (Beijing), Beijing 100083, China)
出处 《数学的实践与认识》 北大核心 2017年第18期310-320,共11页 Mathematics in Practice and Theory
关键词 禽流感 迁徙 全局稳定 Avian influenza migration global stability
  • 相关文献

参考文献2

二级参考文献8

  • 1Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721. 被引量:1
  • 2Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716. 被引量:1
  • 3Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243. 被引量:1
  • 4Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539. 被引量:1
  • 5Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154. 被引量:1
  • 6Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858. 被引量:1
  • 7LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976. 被引量:1
  • 8Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326. 被引量:1

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部