期刊文献+

基于BP人工神经网络的煤矿支护系统可靠性研究

Research on the reliability of coal mine support system based on BP artificial neural network
下载PDF
导出
摘要 本文从开采参数和煤层赋存条件两个方面总结了影响工作面支护系统可靠性的因素,利用BP人工神经网络算法,建立了基于8-4-1模型的支护系统可靠性分析模型,通过对不同样本的计算,预测结果比较精确,能够为下一步的工作提供数据。 In this paper, through the analysis of fully mechanized coal face support system and the characteristics of the hydraulic support, summed up the factors affecting the reliability of the working face support system from mining parameters and coal seam occurrence conditions two aspects. By using BP artificial neural network algorithm, the reliability analysis model of the supporting system is established based on8-4-1 model, through the calculation of different samples, the prediction results are more accurate, which can provide the data for the next step of work.
作者 高超 Gao Chao(Datong coal group Tongxin Coal Mine Co. Ltd., Shanxi Datong 03700)
出处 《山东煤炭科技》 2016年第12期21-22,24,共3页 Shandong Coal Science and Technology
关键词 人工神经网络 综采 支护 可靠性 artificial neural network fully mechanized mining support reliability
  • 相关文献

参考文献5

二级参考文献18

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部