期刊文献+

微细通道纳米制冷剂流动沸腾阻力特性 被引量:3

A study on flow boiling resistance of nanorefrigerant in rectangular microchannels
下载PDF
导出
摘要 分别以质量分数为0.2%、0.5%和0.8%的Al2O3-R141b纳米制冷剂和纯制冷剂R141b为工质,在水力直径为1333μm的矩形微细通道内进行了流动沸腾实验,分析了纳米颗粒浓度对工质两相摩擦压降的影响,对比了实验前后换热壁面的表面能。研究结果表明:实验工况相同时,质量分数为0.2%、0.5%和0.8%的纳米制冷剂的两相摩擦压降均比纯制冷剂低,降低的最大幅度分别约为11.6%、14.8%和19.2%;实验后纳米颗粒在换热壁面附着,使壁面表面能增大,质量分数为0.2%、0.5%和0.8%的纳米制冷剂实验后换热壁面表面能比实验前分别增大了1.26倍、1.44倍和1.91倍,减小了换热表面的粗糙度和提高其润湿性,使得工质两相摩擦压降减小;根据实验值与模型预测值的对比情况,对Qu-Mudawar模型进行修正,拟合得到的关联式能很好预测实验值,平均绝对误差为9.78%。 The flow boiling characteristics were experimentally investigated through the aluminum-based rectangular microchannels with a hydraulic diameter of 1333?m,using Al2O3-R141 b nanorefrigerants with a different partical of 0.2%,0.5% and 0.8%(mass fraction) and pure refrigerant as the working fluids.The effect of concentration on the two-phase frictional pressure drop were investigated by comparing the surface energy of heat transfer surface before and after experiment.Results showed that when nanorefrigerants with a different particles of 0.2%,0.5% and 0.8% were working fluids,the two-phase frictional pressure drop was lower than pure refrigerant under the same experimental conditions,and the biggist drop were 11.6%,14.8% and 19.2%.Nanoparticles adhered to the surface after experiment and increased the surface energy of heat transfer surface by 1.26 times,1.44 times and 1.91 times,respectively.It reduced the roughness and improved the surface wettability of heat transfer surface,made two-phase frictional pressure drop decrease.Based on the comparison of experimental data with predicted value of models,modified Qu-Mudawar,the new correlation had a better predict ability.The mean absolute error decreased to 9.78%.
出处 《化工进展》 EI CAS CSCD 北大核心 2016年第12期3763-3770,共8页 Chemical Industry and Engineering Progress
基金 国家自然科学基金项目(21276090)
关键词 微细通道 纳米制冷剂 两相摩擦压降 表面能 microchannels nanorefrigerant two-phase frictional pressure drop surface energy
  • 相关文献

参考文献6

二级参考文献65

  • 1周继军,施伟,甘云华.微尺度相变传热中的不稳定现象[J].节能技术,2007,25(1):19-22. 被引量:3
  • 2张荣荣,杨静,陆向迅,等.微通道换热器在户式中央空调上应用的实验研究[C]//中国制冷学会2009年学术年会论文集,中国天津,2009. 被引量:2
  • 3Andrew Keogh. Micro-channel heat exchanger [J]. IEA Heat Pumps Newsletter, 2007,25 (3) : 15-17. 被引量:1
  • 4K Andrew. Mircochannel heat exchangers[J].IEA Heat Pump Centre Newsletter, 2007, 25 (3):15-17. 被引量:1
  • 5P Kennet, C M Claudi, N Stefan, et al. The advantage of brazed aluminum heat exchanger applied in HVAC 8~ R field[C] // The SAPA Shanghai 2008 Technical seminar. Shanghai, 2008. 被引量:1
  • 6Cho H, Cho K. Mass Flow Rate Distribution and Phase Separation of R-22 in Multi-Microchannel Tubes under Adiabatic Condition [J]. Microscale Thermophysical Engineering, 2004,8(2) : 129-139. 被引量:1
  • 7Sa Y C, Jang D Y, Ko Oh S K. Flow Maldistribution of Flat Tube Evaporator [C]//The 4th international Symposium on HVAC. Beijing, 2003. 被引量:1
  • 8Vishwomath Subramaniam. Design of air-cooled microchannel condensers for real-distributed air flow conditions[D]. Georgia institute of technology, 2004. 被引量:1
  • 9T kvlkarnic, C W Bullard. Design tradeoffs in microchannel heat exchanger[C] // University of Illinois at Urbana Champaign. ARCR TR-208, 2003. 被引量:1
  • 10S Jain, CW Bullard. Optimization of heat exchanger design parameters for hydrocarbon refrigerant system [C] // University of Illinois at Urhana Champaign. ARCR TR-233, 2003. 被引量:1

共引文献154

同被引文献81

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部