期刊文献+

改进的单类协同过滤推荐方法 被引量:4

Improved One-Class Collaborative Filtering for Recommendation System
下载PDF
导出
摘要 在使用矩阵分解方法解决单类协同过滤问题时,数据的稀疏性以及负样本的缺乏会导致分解特征提取不明确,训练结果区分度低等诸多弊端。针对此问题提出了一种综合考虑物品相似度以及用户活跃度的正负样本选择算法,根据物品相似度向原始数据中添加一定正样本,同时根据用户活跃度向每个用户添加不同数量的负样本,从而减小了稀疏性和缺少负样本对使用矩阵分解方法解决单类协同过滤问题的影响。实验结果表明,该算法能够提高正负样本添加的准确性,减少矩阵稀疏性对单类协同过滤问题的影响,从而提高推荐的准确性。 The sparsity of data and the lack of negative samples have a bad influence on the result of matrix factor-ization based one-class collaborative filtering approach, such as features extracted are not obvious and low differen-tiation between training results. This paper proposes an algorithm to choose positive and negative samples by consi-dering both item similarity and user activity. With this algorithm, more positive samples can be added via the item similarity and more negative samples can be added with the aid of the user activity. In this case, when matrix factor-ization is used in one-class collaborative filering, the influence of the sparsity and the lack of negative samples can be effectively reduced. A series of experiments show that the new algorithm can add positive and negative samples more accurately, reduce the sparsity, and improve the recommendation accuracy.
作者 王鹏 景丽萍
出处 《计算机科学与探索》 CSCD 2014年第10期1231-1238,共8页 Journal of Frontiers of Computer Science and Technology
基金 中央高校基本科研业务费专项资金 No.2014JBM029~~
关键词 矩阵分解 单类协同过滤 稀疏性 正负样本 matrix factorization one-class collaborative filtering sparsity positive and negative samples
  • 相关文献

参考文献16

  • 1Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. 被引量:1
  • 2Liu Jianguo,Zhou Tao,Wang Binghong.Advance research on personalized recommendation system[J].Progress in Natural Science,2009,19(1):1-15. 被引量:1
  • 3Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI 98).San Francisco,CA,USA:Morgan Kaufmann Publishers Inc,1998:43-52. 被引量:1
  • 4Koren Y,Bell R,Volinsky C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. 被引量:1
  • 5Koren Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD 08).New York,NY,USA:ACM,2008:426-434. 被引量:1
  • 6Pan Rong,Zhou Yunhong,Cao Bin,et al.One-class collaborative filtering[C]//Proceedings of the 8th IEEE International Conference on Data Mining(ICDM 08).Piscataway,NJ,USA:IEEE,2008:502-511. 被引量:1
  • 7Salton G.Automatic text processing[J].Science,1970,168(3929):335-343. 被引量:1
  • 8Konstan J A,Miller B N,Maltz D,et al.GroupLens:applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87. 被引量:1
  • 9李改,李磊.基于矩阵分解的协同过滤算法[J].计算机工程与应用,2011,47(30):4-7. 被引量:58
  • 10Linden G,Smith B,York J.Amazon.com recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80. 被引量:1

二级参考文献152

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186 被引量:1
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201 被引量:1
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006 被引量:1
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58 被引量:1
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749 被引量:1
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354 被引量:1
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70 被引量:1
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87 被引量:1
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217 被引量:1
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80 被引量:1

共引文献585

同被引文献15

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部