期刊文献+

基于几何图像滤波的3D人脸识别算法 被引量:5

3D face recognition by applying filter based on geometry image
下载PDF
导出
摘要 针对表情变化下的三维人脸识别问题,提出了一种基于几何图像滤波的特征提取方法,并根据样本图像滤波后的特征分布函数给出最优卷积滤波器的设计过程.首先,利用网格平面参数化方法,将人脸网格映射到边界为正四边形的平面区域内,经过线性插值采样得到具有三维形状的二维几何图像;然后,将整体几何图像切割成局部分块图像的集合,在每组局部分块图像构成的训练样本库中利用差分进化算法对滤波器进行优化设计;最后,利用训练得到的最优滤波器提取对应分块图像的局部特征并计算相似度,将相似度得分融合,即可得到最终识别结果.利用FRGC v2人脸数据库进行实验验证,结果表明,使用几何图像滤波能显著提高算法的精度和鲁棒性. Aiming at the 3D face recognition under expression variation, a feature extraction method by applying filter on geometry image is proposed. The design for the optimal convolution filter is presented based on the distribution function of filtered features. First, after objectively mapping facial mesh into square domain based on mesh parameterization, a 2D geometry image with 3D shape is obtained by linear interpolation. Then, the entire images in the training set are segmented into pat- ches which are used for the differential evolution algorithm to design the optimal convolution filters. Finally, the similarity scores between local features are computed by applying these filters on corre- sponding patches, and the final decision is made by combining results of these scores. The experi- mental results from FRGC (face recognition grand challenge) v2 (version 2 ) databases show that both accuracy and robustness are improved by applying filter on geometry image.
作者 蔡亮 达飞鹏
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期859-863,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51175081) 江苏省自然科学基金资助项目(BK2010058)
关键词 3D人脸识别 形状滤波 几何图像 卷积滤波 3D face recognition shape filtering geometry image convolution filter
  • 相关文献

参考文献12

  • 1Bowyer K, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face rec- ognition [J]. Computer Vision and Image Understand- ing, 2006, 101(1) : 1 -15. 被引量:1
  • 2Cai Liang, Da Feipeng. Nonrigid-deformation recovery for 3D face recognition using multiscale registration [J]. IEEE Computer Graphics and Applications, 2012, 32(3) : 37 -45. 被引量:1
  • 3Al-Osaimi F, Bennamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognition [J]. International Journal of Computer Vision, 2009, 81(3) : 302-316. 被引量:1
  • 4Lu X, Jain A. Deformation modeling for robust 3D face matching [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 ( 8 ) : 1346 - 1357. 被引量:1
  • 5Faltemier T, Bowyer K, Flynn P. Using multi-instance enrollment to improve performance of 3D face recogni- tion [ J ]. Computer Vision and Image Understanding, 2008, 112(2) : 114-125. 被引量:1
  • 6Bronstein A M, Bronstein M M, Kimmel R. Three-di- mensional face recognition [ J ]. International Journal of Computer Vision, 2005, 64( 1 ): 5-30. 被引量:1
  • 7Chang K I, Bowyer K W, Flynn P J. Multiple nose re- gion matching for 3D face recognition under varying fa- cial expression [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 10 ) : 1695 - 1700. 被引量:1
  • 8Mian A, Bennamoun M, Owens R. An efficient multi- modal 2D-3D hybrid approach to automatic face recog- nition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29( 11 ) : 1927 - 1943. 被引量:1
  • 9蔡亮,达飞鹏.结合形状滤波和几何图像的3D人脸识别算法[J].中国图象图形学报,2011,16(7):1303-1309. 被引量:10
  • 10Passalis G, Kakadiaris I, Theoharis T. Intraclass re- trieval of nonrigid 3D objects: application to face rec- ognition[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 ( 2 ) : 218 - 229. 被引量:1

二级参考文献15

  • 1Bowyer K, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D +2D face recognition [ J]. Computer Vision and Image Understanding, 2006, 101 ( 1 ) : 1-15. 被引量:1
  • 2Zhao W, Chellappa R, Phillips P, et al. Face recognition: A literature survey [ J]. ACM Computing Surveys, 2003, 35 (4) : 399-458. 被引量:1
  • 3Al-Osaimi F, Bennamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognition [ J 1. International Journal of Computer Vision, 2009, 81 ( 3 ) : 302-316. 被引量:1
  • 4Lu X, Jain A. Deformation modeling for robust 3D face matching [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1357. 被引量:1
  • 5Faltemier T, Bowyer K, Flynn P. Using multi-instance enrollment to improve performance of 3 D face recognition [ J ]. Computer Vision and Image Understanding, 2008, 112 (2): 114-125. 被引量:1
  • 6Samir C, Srivastava A, Daoudi M. Three-dimensional face recognition using shapes of facial curves [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 11 ) : 1858-1863. 被引量:1
  • 7Bronstein A, Bronstein M, Kimmel R. Three-dimensional face recognition [ J]. International Journal of Computer Vision, 2005, 64(1) : 5-30. 被引量:1
  • 8Kakadiaris I, Passalis G, Toderici G, et al. Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (4): 640-649. 被引量:1
  • 9Passalis G, Kakadiaris I, Theoharis T. Intraclass retrieval of nonrigid 3D objects: Application to face recognition [ J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2007, 29(2) : 218-229. 被引量:1
  • 10Gu X, Gortler S, Hoppe H. Geometry images [ C ]// Proceedings of SIGGRAPH. New York : Association for Computing Machinery, 2002: 355-361. 被引量:1

共引文献9

同被引文献31

  • 1蔡念,胡匡祜,李淑宇,苏万芳.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245. 被引量:31
  • 2柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 3Zhong L W,Kwok J T.Efficient sparse modeling with automatic feature grouping[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(9):1436-1447. 被引量:1
  • 4Guan N,Tao D,Luo Z.Online nonnegative matrix factori zation with robust stochastic approximation[J].IEEE Transactions on Neural Networks and Learning Systems,2013,23(7):1087-1099. 被引量:1
  • 5Dibeklioglu H.Part based 3D face recognition under pose and expression variations[D].Istanbul: Bogazici University,2008. 被引量:1
  • 6Nair P,Cavallaro A.Matching 3D faces with partial data[J].Proc British Machine Vision Conference,UK: Leeds,2008:1-4. 被引量:1
  • 7Zhang Z,Wang J,Zha H.Adaptive manifold learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(1):131-137. 被引量:1
  • 8Segundo M P,Queirolo C,Bellon O R P.Silva,automatic 3D facial segmentation and landmark detection[C]//Proc of 14th International Conference on Image Analysis and Pro cessing,Italy:Modena,2007:431-436. 被引量:1
  • 9Theoharis T,Passalis G,Toderici G.Unified 3D face and ear recognition using wavelets on geometry images[J].Pat tern Recognition,2008,41(3):796-804. 被引量:1
  • 10Wei X,Longo P,Yin L.Automatic facial pose determina tion of 3D range data for face model and expression identification[C]//Proc of 14th International Conference on Image Analysis and Processing,Italy:Modena,2007:458-469. 被引量:1

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部