期刊文献+

五种分割算法在高分辨率遥感图像中的适用性分析 被引量:2

Applicability analysis of five segmentation algorithms for high resolution remote sensing lmages
原文传递
导出
摘要 本文将5种图像分割算法应用在高分辨率遥感图像分割上,并利用图像分割评价指标,对5种分割算法进行了对比分析,评价了各种方法的优缺点,讨论了它们在高分辨率遥感图像分割中的适用性,明确了不同分割方法的适用条件。实验结果表明,改进的分水岭分割法与JSEG分割法在高分辨率遥感图像分割中的适用性比较强,对大小斑块分割结果都比较好,而其他3种方法不能兼顾不同等级的斑块。 Five different segmentation algorithms proposed in the literature were applied to high resolution remote sensing image,including the improved watershed segmentation method,the JSEG method,the hill-climbing segmentation method,the super-pixel segmentation method and the topological derivative segmentation method.Comparisons among the above five segmentation approaches were performed using the segmentation qualitative evaluation indices,and the advantages and the disadvantages of each method were analyzed.Finally,the applicability of the five algorithms to high resolution remote sensing images was discussed,and applicable conditions of each segmentation algorithm were demonstrated.Experiment result showed that improved watershed segmentation method and JSEG segmentation method could not only obtain patterns with small sizes but also big size objects,and be better applied to high resolution remote sensing image,while the other three methods could not take enough attention to objects with different degrees.
出处 《测绘科学》 CSCD 北大核心 2012年第4期209-212,共4页 Science of Surveying and Mapping
基金 国家自然科学基金资助项目(40901221) 中国博士后科学基金资助项目(20090450182)
关键词 高分辨率遥感图像 分割算法 评价指标 适用性 high resolution remote sensing image segmentation algorithm evaluation index applicability
  • 相关文献

参考文献15

  • 1孟庆涛,龚声蓉,刘纯平,王朝晖.一种基于图的颜色纹理区域分割方法[J].中国图象图形学报,2009,14(10):2092-2096. 被引量:6
  • 2BEUCHER S, LANTUEJOUL C. Use of Watersheds in Contour Detection[ C ]//Intemational Worksho Pon Image Proeessing: Real Time Edge and Motion Detection/Esti- mation. Rennes, France, 1979. 被引量:1
  • 3VINCENT L,SOILLE P. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations [C]//IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1991, 13(6) :583-598. 被引量:1
  • 4DENG Yining, KENNEY C, MOORE M S, et al. Peer Grou PFihering and Perceptual Color Image Quantization [ C ]//IEEE International Symposium on Circuits and Sys- tems, 1999:21-24. 被引量:1
  • 5孙卫芳,段智勇,朱仲杰.结合JSEG与分水岭方法的彩色图像分割[J].计算机工程与应用,2010,46(21):185-187. 被引量:8
  • 6ZAHER A A, RUBA A H. Hill-manipulation: An effec- tive algorithm for color image segmentation[ J ]. Image and Vision Computing, 2006, 24 (8) : 894-903. 被引量:1
  • 7REN Xiaofeng, JITENDRA M. Learning a Classi? cation Model for Segmentation [ C ]//Ninth IEEE International Conference on Computer Vision. France, 2003 : 10-17. 被引量:1
  • 8l SHI J, MAILK J. Normalized Cuts and Image Segmenta- tion [ J ]. Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905. 被引量:1
  • 9HEGADI R S. Segmentation of tumors from endoscopic images using topological derivatives based on discrete ap- proach[C] //International Conference on Signal and Im- age Processing. Chennai ,2010:54-58. 被引量:1
  • 10张文娟,冯象初.基于拓扑导数的复扩散在图像去噪及边缘提取中的应用[J].数据采集与处理,2010,25(3):330-335. 被引量:1

二级参考文献28

  • 1朱仲杰,蒋刚毅,郁梅,吴训威.一种基于时空信息的运动目标提取新算法[J].中国图象图形学报(A辑),2003,8(4):422-426. 被引量:6
  • 2李楠,梁明,霍宏,方涛.基于JSEG改进算法的高分辨率遥感影像分割[J].西安科技大学学报,2007,27(1):58-62. 被引量:3
  • 3Wu Z,Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [ J]. IEEE Transactions on PAMI, 1993,15 ( 11 ) : 1101 - 1113. 被引量:1
  • 4Sarkar S, Quantitative K L. Measures of change based on feature organization: eigenvalues and eigenvectors [ J ]. Computer Vision an Image Understanding, 1998,71 ( 1 ) : 110-136. 被引量:1
  • 5Ding C, Rcn X F, Zha H, et al. Spectral min-max cut for graph partitioning and data clustering [ A ]. In: Proceedings of the IEEE International Conference on Data Mining [ C ], Los Alamitos, CA, USA, 2001:107-114. 被引量:1
  • 6Rother C, Kolmogorov V, Blake A. " GrabCut"-interactive foreground extraction using iterated graph cuts [ J ]. ACM Transactions on Graphics, 2004 : 23 ( 3 ) : 309- 314. 被引量:1
  • 7Vicente S,Kolmogorov V,Rother C. Graph cut based image segmentation with connectivity priors[ A ]. In : Proceedings of IEEE Conference on Computer Vision and Pattern Recognition( CVPR08 ) [ C ], Anchorage, Alska, USA ,2008. 被引量:1
  • 8Campbell N, Vogiatzis G, Hernandez C,et al. Automatic 3D object segmentation in multiple views using volumetric graph-cuts[ A ]. In: Proceedings of the British Machine Vision Conference[ C ], University of Warwick, Warwick, UK,2007,1 : 530- 539. 被引量:1
  • 9Tang Zhen, Miao Zhen-jiang. Fast Background subtraction using improved GMM and graph cut [ A ]. In: Proceedings of Congress on Image and Signal Processing[ C ] , Hainan, China ,2008 : 181 - 186. 被引量:1
  • 10Vineet V, Narayanan P J. CUDA-Cuts: Fast graph cuts on the GPU [ A]. In:Proceedings of the CVPR Workshop on Visual Computer Vision on GPUs[ C l, Anchorage, Alaska, USA,2008. 被引量:1

共引文献12

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部