摘要
给出矩阵多项式在一般基下的张量Bezoutian的定义,推广了标准幂基下的古典张量Bezoutian.讨论了该矩阵的Barnett型分解,缠绕关系和关于可控制/可观测矩阵的表示等重要性质.
In this paper,the definition of tensor Bezoutian for matrix polynomials with respect to a general basis is given,which generalizes the classical tensor Bezoutian under a standard power basis.Some important properties such as the Barnett-type factorization,an intertwining relation,and the controllability/observability matrix expressions are discussed.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2011年第1期102-110,共9页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
安徽省自然科学基金(090416230)