期刊文献+

一般基下矩阵多项式的张量Bezoutian

Tensor Bezoutian for matrix polynomials with respect to a general basis
下载PDF
导出
摘要 给出矩阵多项式在一般基下的张量Bezoutian的定义,推广了标准幂基下的古典张量Bezoutian.讨论了该矩阵的Barnett型分解,缠绕关系和关于可控制/可观测矩阵的表示等重要性质. In this paper,the definition of tensor Bezoutian for matrix polynomials with respect to a general basis is given,which generalizes the classical tensor Bezoutian under a standard power basis.Some important properties such as the Barnett-type factorization,an intertwining relation,and the controllability/observability matrix expressions are discussed.
作者 马超 吴化璋
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2011年第1期102-110,共9页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 安徽省自然科学基金(090416230)
关键词 一般多项式基 张量Bezoutian 联合矩阵 可控制/可观测矩阵 Sylvester结式矩阵 general polynomial basis tensor Bezoutian confederate matrix controllability/observability matrix Sylvester resultant matrix
  • 相关文献

参考文献13

  • 1Heinig G.The concepts of a Bezoutian and a resolvent for operator bundles[J].Functional Anal and Appl,1977,11:241-243. 被引量:1
  • 2Horn R,Johnson C.Topics in Matrix Analysis[M].Cambridge:Cambridge University Press,1991. 被引量:1
  • 3Heinig G.Resultante,Bezoutiante und Spektraverteilungsprobleme fur Operatorpolynome[J].Math Nachr,1979,91:23-43. 被引量:1
  • 4Barnett S,Lancaster P.Some properties of the Bezoutian for polynomial matrices[J].Linear and Multilinear Algebra,1980,9:99-111. 被引量:1
  • 5Ptak V,Wimmer H K.On the Bezoutian for polynomial matrices[J].Linear Algebra Appl,1985,71:267-272. 被引量:1
  • 6Gohberg I,Lancaster P,Rodman L.Matrix Polynomials[M].New York:Academic Press,1982. 被引量:1
  • 7Heinig G,Rost K.Algebraic Methods for Toeplitz-like Matrices and Operators[M].Basel:Birkhauser,1984. 被引量:1
  • 8Anderson B D O,Jury E I.Generalized Bezoutian and Sylvester matrices in multivariable linear control[J].IEEE Trans Autom Control,1976,AC-21:551-556. 被引量:1
  • 9Maroulas J,Barnett S.Polynomials with respect to a general basis Ⅰ:Theory[J].J Math Anal Appl,1979,72:177-194. 被引量:1
  • 10Maroulas J,Barnett S.Polynomials with respect to a general basis Ⅱ:Applications[J].J Math Anal Appl,1979,72:599-614. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部