摘要
采用静电纺丝技术,以聚丙烯腈(PAN)/醋酸锌为前驱体制备复合纳米纤维,随后经碳化、酸化获得多孔碳纳米纤维.扫描电子显微镜(SEM)观察发现,碳纳米纤维表面分布大量孔洞.N2吸脱附等温曲线(BET)测试材料比表面积达413m2·g-1.循环伏安法(CV)和恒流充放电(CP)性能测试表明:多孔碳纳米纤维具有较好的电化学性能,在1A·g-1的电流密度下比电容达275F·g-1.相比碳纳米纤维比容量提高了162%.
Zinc acetate/polyacrylonitrile nanofibers were prepared by an electrospinning method. The as-prepared nanofibers were carbonized under argon and washed with acid to obtain porous carbon nanofibers. The surface morphology and microstructure of the porous carbon nanofibers were examined by scanning electron microscopy and X-ray diffraction. The surface area was found to be 413 m^2·g^-1 by the Brunauer-Emmett-Teller (BET) method. The electrochemical performance of the electrodes was characterized by cyclic voltammetry and by chronopotentiogram tests. The results showed that the specific capacitance of the as-repapered carbon porous nanofiber electrode was 275 F·g^-1 under 1 A·g^-1, which is 162% higher than that of the carbon nanofibers without a porous structure.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2010年第12期3169-3174,共6页
Acta Physico-Chimica Sinica
基金
国家重点基础研究发展计划项目(973)(2007CB209703)
国家自然科学基金(20633040,20873064)资助~~