期刊文献+

基于SVM输出概率和后置滤波的运动目标分类 被引量:3

Moving target classification using SVM probability and post-filtering
下载PDF
导出
摘要 提出了一种新的运动目标分类方法,该方法利用sigmoid函数将标准SVM的输出结果直接转换为目标所属类别的概率,避免了分类器的组合问题;同时该方法还利用后置加权均值滤波器对SVM的初始输出结果进行滤波平滑处理,进一步提高了分类的正确率。实验结果表明,该方法能有效地提高运动目标分类的精度。 This paper presented a new method to classify moving targets, in which the outputs of standard SVMs could be mapped directly into target category' s posterior probabilities by the sigmoid function. Furthermore, also put forward a post-filtering framework to improve classification accuracy, using a weighted average filter to smooth the initial outputs of SVM classitiers. Experimental results demonstrate that the framework of SVM probability outputs combined with a post-filter is more effective for moving target classification from video in terms of classification accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期778-780,共3页 Application Research of Computers
基金 重庆市自然科学基金资助项目(CSTC-2008BB2252) 国家大学生创新性实验计划资助项目(081063510)
关键词 支持向量机 后验概率 均值滤波 运动目标分类 SVM (support vector machine) posterior probability average-filtering moving target classification
  • 相关文献

参考文献9

二级参考文献19

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2Platt J C.Probabilities for Support Vector Machines[M].Massachusetts:MIT Press,2000:61-74. 被引量:1
  • 3Moreira M,Mayoraz E.Improved Pairwise Coupling Classification with Correcting Classifiers[C].Proc.of the 10th European Conference on Machine Learning,1998:160-171. 被引量:1
  • 4Hastie T,Tibshirani R.Classification by Pairwise Coupling[J].The Annals of Statistics,1998,26(1):451-471. 被引量:1
  • 5Cocosco C A,Kollokian V,Kwan R K S,et al.BrainWeb:Online Interface to a 3D MRI Simulated Brain Database[C].Proceedings of the 3rd International Conference on Functional Mapping of the Human Brain,Copenhagen,1997. 被引量:1
  • 6Collins R, et al. A system for video surveillance and monitoring: VSAM final report [R]. Carnegie Mellon University: Technical Report CMU-RI-TR-00-12, 2000. 被引量:1
  • 7Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking fro real-time video [A]. In: Proc IEEE Workshop on Application of Computer Vision [C]. 1998. 8-14. 被引量:1
  • 8Daniel Toth, Til Aach. Detection and re.cognition of moving objects using statistical motion detection and Fourier descriptors [A]. In: Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP'03) [C]. 2003.430-435. 被引量:1
  • 9Cutler R, Davis L. Robust real-time periodic motion detection analysis, and application [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22(8): 781-796. 被引量:1
  • 10Yang Ran, Tsaac Weiss. An efficient and robust human classification algorithm using finite frequencies probing [A]. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'04) [C]. 2004. 132-138. 被引量:1

共引文献118

同被引文献21

  • 1Vapnik V N. Statistical Learning Theory[M]. New York:Wiley, 1998. 被引量:1
  • 2Turk M,Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroseience, 1991,3(1):71-86. 被引量:1
  • 3李超峰.基于支持向量机的非线性系统广义预测控制研究与应用[D].杭州:浙江大学,201C. 被引量:1
  • 4LIU J,WANG Y,ZHANG Z,et al.Multi-view moving object classification via transfer learning[C]//Proceedings of the 1st Asian Conference on Pattern Recognition.Piscataway:IEEE Press,2011:259-263. 被引量:1
  • 5LUO Y,TAO D,GENG B,et al.Manifold regularized multitask learning for semi-supervised multilabel image classification[J].IEEE Transactions on Image Processing,2013,22(2):523-536. 被引量:1
  • 6GOMEZ-CHOVA L,CAMPS-VALLS G,BRUZZONE L,et al.Mean map kernel methods for semi-supervised cloud classification[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(1):207-220. 被引量:1
  • 7GONG Y C,LIU F,CHEN C.Graph-based semi-supervised learning with manifold preprocessing for image classification[C]//Proceedings of the 2008 IEEE International Conference on Systems,Man and Cybernetics.Piscataway:IEEE Press,2008:391-395. 被引量:1
  • 8LIU W,HE J,CHANG S F.Large graph construction for scalable semi-supervised learning[EB/OL].[2012-10-10].http://rnachinelearning.wustl.edu/mlpapers/paper_files/icml2010_LiuHC10.pdf. 被引量:1
  • 9HU W,TAN T,WANG L,et al.A survey on visual surveillance of object motion and behaviors[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2004,34(3):334-352. 被引量:1
  • 10VIOLA P,JONES M J,SNOW D.Detecting pedestrians using patterns of motion and appearance[J].International Journal of Computer Vision,2005,63(2):153-161. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部