期刊文献+

氢/氩热等离子体裂解煤碳-氢-氧-氩多相多组分体系的热力学分析 被引量:4

Thermodynamic Analysis of Hydrogen-Carbon-Oxygen-Argon System for Coal Pyrolysis in Hydrogen-Argon Thermal Plasma
下载PDF
导出
摘要 采用Gibbs自由能极小化法对等离子体裂解煤制乙炔碳-氢-氧-氩多相多组分体系的化学反应平衡组成进行了计算,结果表明,在C-H-Ar平衡体系中,惰性组分氩的存在降低了乙炔的最高平衡产率,氩在5000K以下基本不电离,典型组成为C:H:Ar=1:13.39:0.6的液化石油气裂解反应体系的最佳反应温度区间为2800~3200K.在C-H-Ar-O多相平衡体系中,氧作为杂质同样降低了乙炔的平衡产率,体系中氧以CO的形式存在,典型组成为C:H:O:Ar=1:8.638:0.160:3.339的煤裂解反应体系的最佳反应温度区间为3000~3200K. In order to find the temperature range and initial reactant ratio for the maximum yield of acetylene, chemical thermodynamic equilibrium of heterogeneous multi-component C-H-O-Ar system was studied. All of the thermodynamic equilibrium calculations were based on minimization of Gibbs free energy. Computations were performed for the temperatures from 500 to 5 000 K at an interval of 100K. The results show that existence of argon reduces the maximum equilibrium yield of acetylene in C-H-Ar system. The best temperature range for acetylene production from LPG pyrolysis by hydrogen-argon plasma is 2 800~3 200 K for the system with C:H:Ar=1:13.39:0.6. In C-H-Ar-O system, oxygen, as impurity, also reduces the maximum equilibrium yield of acetylene. Oxygen element always exists in the form of carbon monoxide. The best temperature range for acetylene production from coal pyrolysis by hydrogen-argon plasma is 3 000~3 200 K for the system with C:H:O:Ar=-1:8.638:0.160:3.339.
出处 《过程工程学报》 CAS CSCD 北大核心 2009年第1期79-83,共5页 The Chinese Journal of Process Engineering
基金 国家重点基础研究发展计划(973)基金资助项目(编号:2005CB221202) 山东省优秀中青年科学家科研奖励基金资助项目(编号:2007BS08009)
关键词 热力学平衡 多相多组分 Gibbs自由能 等离子体 乙炔 thermodynamic equilibrium heterogeneous multi-component Gibbs free energy plasma acetylene
  • 相关文献

参考文献9

二级参考文献39

  • 1邱介山,王谦,马腾才.煤在等离子体中热解直接生产乙炔[J].煤化工,1994,22(3):8-15. 被引量:8
  • 2林伟刚,宋文立.丹麦生物质发电的现状和研究发展趋势[J].燃料化学学报,2005,33(6):650-655. 被引量:41
  • 3陈宏刚,张旭斌,张永发,李凡,谢克昌,樊友三.煤等离子体热解法制乙炔的工艺技术现状及进展[J].煤炭转化,1996,19(2):19-24. 被引量:6
  • 4陈宏刚.煤和液化石油气在氢/氩等离子体中热解过程的研究[M].太原:太原理工大学,1999.127-139. 被引量:1
  • 5[1]HUGHES E.Biomass cofring:Economics,policy and opportunities[J].Biomass Bioenergy,2000,19(6):457-465. 被引量:1
  • 6[2]BAXTER L.Biomsas-coal co-combustion:Opportunity for affordable renewable energy[J].Fuel,2005,84(10):1295-1302. 被引量:1
  • 7[3]NUSSBAUMER T.Combustion and co-combustion of biomass:Fundamentals,technologies,and primary measures for emission reduction[J].Energy Fuels,2003,17(6):1510-1521. 被引量:1
  • 8[4]ROBINSON A L,BUCKLEY S G,BAXTER L L.Experimental measurements of the thermal conductivity of ash deposits:Part 1 measurement technique[J].Energy Fuels 2001,15(1):66-74. 被引量:1
  • 9[5]ROBINSON A L,BUCKLEY S G,YANG N,BAXTER L L.Experimental measurements of the thermal conductivity of ash deposits:Part 2 effects of sintering and deposit microstructure[J].Energy Fuels 2001,15(1):75-84. 被引量:1
  • 10[6]ROBINSON A L,JUNKER H,BAXTER L L.Pilot-scale investigation of the influence of coal-biomass cofiring on ash deposition[J].Energy Fuels,2002,16(2):343-355. 被引量:1

共引文献74

同被引文献60

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部