摘要
In this article, the authors introduce two operators-geometrical maximal operator Mo and the closely related limiting operator M0^*, then they give sufficient conditions under which the equality M0=MM0^* holds, and characterize the equivalent relations between the weak or strong type weighted inequality and the property of W∞-weight or W∞^*-weight for the geometrical maximal operator in the case of two-weight condition. What should be mentioned is that the new operator-the geometrical minimal operator is equal to the limitation of the minimal operator sequence, and the results for the minimal operator proved in [12] makes the proof elegant and evident.
In this article, the authors introduce two operators-geometrical maximal operator Mo and the closely related limiting operator M0^*, then they give sufficient conditions under which the equality M0=MM0^* holds, and characterize the equivalent relations between the weak or strong type weighted inequality and the property of W∞-weight or W∞^*-weight for the geometrical maximal operator in the case of two-weight condition. What should be mentioned is that the new operator-the geometrical minimal operator is equal to the limitation of the minimal operator sequence, and the results for the minimal operator proved in [12] makes the proof elegant and evident.
基金
supported by the NSF of China and the aid financial plan for the backbone of the young teachers of university of Henan