期刊文献+

抛物问题各向异性非协调元的收敛分析

Convergence analysis for second order parabolic equation with anisotropic constringency
下载PDF
导出
摘要 讨论了各向异性非协调矩形元对二阶抛物方程的逼近,利用该单元的特殊性质及新的技巧,在各向异性网格下得到了与传统有限元方法完全相同的最优的误差估计。 In this paper, anisotropic nonconforming rectangular finite element approximation to the second order parabolic equations is studied. The optimal error estimate same as the traditional finite elemetnt methods is obtained by use of the special properties of the element and some novel techniques.
出处 《平顶山工学院学报》 CAS 2006年第3期13-15,共3页 Journal of Pingdingshan Institute of Technology
基金 国家自然科学基金资助项目(10371113)
关键词 二阶抛物方程 各向异性元 收敛性分析 最优误差估计 second order parabolic equation anisotropic element convergence analysis optimal error estimate
  • 相关文献

参考文献5

二级参考文献18

  • 1石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167. 被引量:56
  • 2朱起定 林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989.. 被引量:31
  • 3P.G. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, Amsterdam,1978. 被引量:1
  • 4S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag New York, Inc, 1998. 被引量:1
  • 5T. Apel, M. Dobrowolski, Anisotropic Interpolation with Application to the Finite Element Method, Computing, 47:3(1992), 277-293. 被引量:1
  • 6A. Zenisek, M. Vanmaele, The interpolation theory for narrow quadrilateral isoparametric finite elements, Numer. Math., 72:1(1995), 123-141. 被引量:1
  • 7T. Apel, G. Lue, Anisotropic mesh refinement in stabilized Galerkin methods, Numer.Math., 74:3(1996), 261-282. 被引量:1
  • 8T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, B.G. Teubner Stuttgart, Leipzig, 1999. 被引量:1
  • 9S.C. Chen, D.Y. Shi and Y.C. Zhao, Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA. J. Numer. Anal., 24(2004), 77-95. 被引量:1
  • 10O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Internat. J. Numer. Meth. Engrg., 1992, 33, Part 1: 1331-1364, Part 2: 1365-1382. 被引量:1

共引文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部