期刊文献+

期权定价数学模型的研究 被引量:2

Study on option pricing mathematical model
下载PDF
导出
摘要 Black-Scholes模型成功地解决了有效市场下的欧式期权定价问题.然而,在现实的证券市场中,投资者将面临数量可观、不容忽视的交易成本.随着期权以及期权理论的不断发展,期权定价问题引起了越来越多的研究者和投资商的不断关注.基于股票价格的对数正态分布假设,运用Black-Scholes模型和无套利原理,创建了能够反映无交易成本和有交易成本的期权定价模型,从而得到欧式看涨期权和看跌期权的定价模型. Black-Scholes model has solved the problem of Euro-option pricing in efficient market successfully. But the investors have to face considerable and in-neglectable transaction costs in real financial market. The option pricing problem has attracted much attention of researches and investors with the development of option and option theories. Based on the hypothesis of lognormal distribution of stock prices and the principle of non-arbitrage, the Black-Scholes model is used to set up option pricing model which reflects the situations with no transaction costs and transaction costs. Pricing models for Euro-options are derived for the calls and puts.
作者 宫华 陈大亨
出处 《沈阳工业大学学报》 EI CAS 2006年第3期331-334,共4页 Journal of Shenyang University of Technology
基金 辽宁省教育厅高等学校人文社科研究资助项目(20040392)
关键词 交易成本 Black—Scholes模型 期权定价 无套利原理 模型研究 transaction costs Black-Scholes model option pricing non-arbitrage principle model study
  • 相关文献

参考文献9

二级参考文献28

  • 1约翰·赫尔.期权、期货与衍生证券[M].北京:华夏出版社,1997.399-447. 被引量:3
  • 2张陶伟(译),期权、期货和衍生证券,1997年,399页 被引量:1
  • 3南京工学院数学教研组,数学物理方程与特殊函数,1982年,58页 被引量:1
  • 4WILMOTT P, HOWSION S, DEWYNNE J. Option pricing mathematical models and computation [M]. Oxford: Oxford Financial Press, 1997. 被引量:1
  • 5Chunsheng Zhou. The term structure of credit spread with jump risk[J]. Journal of Banking & Finance, 2001, 25 :2015-2040. 被引量:1
  • 6Merton R. Option pricing when underlying stock returns are discontinuous[J], Journal of Finance Economics,1976, 3: 125-144. 被引量:1
  • 7Epps T W. Pricing Derivative Securities[M]. World Scientific Publishing, 2000, Chapter 239. 被引量:1
  • 8Black F, Scholes M. The pricing of options and corporate liabilities[J], Journal of Political Economy, 81:637-659. 被引量:1
  • 9Bellamy Nakine. Wealth optimization of in an incomplete market driven by a jump-diffusion proeess[J], Journal of Mathematical Economics, 2001, 35: 259-287. 被引量:1
  • 10Bellamy N, Jeanblanc M. Incompleteness of markets driven by mixed diffusion[J]. Finance Stochast, 2000, 4:209-222. 被引量:1

共引文献45

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部