期刊文献+

基于RS和GA的动态模糊神经网络在短期电力负荷预测中应用 被引量:3

Application of dynamic fuzzy neural network based on rough set theoryand GA in power system short-term load forecast
下载PDF
导出
摘要 分析和探讨了粗糙集(RS)理论、遗传算法(GA)、模糊神经网络相结合的短期负荷预测方法。首先,对采集到的信息进行特征提取,然后利用模糊粗糙集理论中的信息熵进行属性简化、去掉冗余信息,最后用得到的属性作为模糊神经网络的输入进行训练预测。在模糊神经网络内部引入递归环节,构成了动态模糊神经网络DFNN(DynamicFuzzyNeuralNetwork),并采用具有全局寻优能力的遗传算法训练网络,克服了单纯BP算法易陷入局部最优解的缺点。用该方法与常用BP神经网络及Fuzzy法分别对某电网进行一周的日负荷预测,实例的对比分析表明了该方法收敛速度、预测精度和网络规模等方面都有较大改善。 An approach to power system short-term load forecast combining rough set theory, GA (Genetic Algorithm) and fuzzy neural network is discussed. The information features are extracted. The information entropy of fuzzy-rough set theory is used to throw away the redundant information and simplify the attributes,which are put into the fuzzy neural network for training. A DFNN(Dynamic Fuzzy Neural Network) is constructed by introducing recursion segment into the fuzzy neural network,which is trained using genetic algorithm and BP algorithm to avoid being trapped in local convergence. The daily loads of a week are forecasted for a provincial power system with the presented method, the BP neural network and the fuzzy method respectively. Results show that the presented method is better in convergence speed,forecast precision and network scale.
出处 《电力自动化设备》 EI CSCD 北大核心 2005年第12期10-14,18,共6页 Electric Power Automation Equipment
基金 高等学校博士点专项基金资助项目(20040079008) 河北省自然科学基金资助项目(G2005000584)~~
关键词 负荷预测 粗糙集 信息熵 动态模糊神经网络 遗传算法 load forecast rough set information entropy DFNN GA
  • 相关文献

参考文献13

二级参考文献19

  • 1李晓晴,秦翼鸿.多变量励磁模糊控制研究[J].电力系统自动化,1996,20(6):8-11. 被引量:2
  • 2曾黄麟.粗集理论及其应用(一)[J].四川轻化工学院学报,1996,9(1):18-28. 被引量:41
  • 3Chang Bum Kim, Kyoung A Seong, Hyung Lee-Kwang Je.A fuzzy approach to elevator group control system[J]. IEEE Transactions on Systems Man and Cybernetics, 1995, 25(6) : 985-990. 被引量:1
  • 4Clark G G, Mehta P, Prowse R. Knowledge-based elevator controller[ A ]. IEE Proceedings of the International Conference on CONTROL 94[C]. British:1994. 42-47. 被引量:1
  • 5Grantham K H Pang. Elevator scheduling system using blackboard architecture [ J ]. IEE Proceedings, Part D : Control Theory and Applications, 1991, 138(4) : 337-346. 被引量:1
  • 6Yasuyuki Sogawa, Tomo Ishikawa, Kazuyuki Igarashi. Supervisory control for elevator group by using fuzzy expert system which addresses the riding time[ A ]. IEEE IECON Proceedings ( Industrial Electronics Conference ) [ C ]. Japan:1996. 419-424. 被引量:1
  • 7Shintaro Tsuji. Elevator Control Apparatus Using Neural Net[P]. UK GB 2245997A, 1991. 被引量:1
  • 8Kenji Sasaki, Sandor Markon, Masami Nakagawa. Elevator group supervisory control system using neural networks [ J ].Elevator World, 44 ( 2 ) : 81-86. 被引量:1
  • 9Naoki Imasaki, Susumu Kubo, Shoji Nakai et al. Elevator group control system tuned by a fuzzy neural network; applied method[ A ]. IEEE International Conference on Fuzzy Systems 4[C]. US: 1995. 1735-1740. 被引量:1
  • 10Wael A Farag, Victor H Quintana, Germano Lambert-Torres. A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems[J]. IEEE Transactions on Neural Networks, 1998, 9 (5) : 756-767. 被引量:1

共引文献59

同被引文献38

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部