摘要
运用线性和非线性分析方法分析不同强度等长收缩诱发局部肌肉疲劳及恢复过程中表面肌电信号(surfaceelectromyogram,sEMG)特征的变化规律,探讨影响sEMG信号变化的可能原因和机制。结果显示,在肱二头肌疲劳收缩过程中,sEMG的特征指标平均肌电值(averageEMG,AEMG)、平均功率频率(meanpowerfrequency,MPF)、Lempel-Ziv复杂度(Lempel-Zivcomplexity,C(n))和确定性线段百分数(Determinism%,%DET)的变化具有良好的规律性。恢复期AEMG没有表现出规律性的变化,MPF、C(n)和%DET在恢复期2秒即开始显著恢复,在前10秒恢复很快,随后恢复速度变慢。恢复初期sEMG信号特征的快速变化提示中枢控制因素可能发挥更大作用。
Surface electromyographic (sEMG) signals during isometric fatiguing contractions were analyzed with both linear and non-linear method to investigate the possible factor which dominated the changes in sEMG signals. The results demonstrated that the sEMG parameter, average EMG (AEMG), mean power frequency (MPF), Lempel-Ziv complexity (C(n)) and Determinism% (%DET) in bicep bracii (BB) muscle, changed regularly during fatiguing contractions. In recovering period AEMG did not show observable regularity while MFP, C(n) and %DET remarkably recovered only by 2 seconds. These three parameters regressed rapidly in the initial 10 seconds and then slowed down. The rapid changes of sEMG parameters in recovery periods suggest that central controlling factor may play a more important role in shaping sEMG signals.
出处
《生物物理学报》
CAS
CSCD
北大核心
2005年第5期385-390,共6页
Acta Biophysica Sinica
基金
国家自然科学基金项目(30170447)
中国-芬兰政府间科技合作项目(AM1021)
关键词
疲劳
表面肌电
复杂度
递归定量分析
Fatigue
Surface electromyography
Lempel-Ziv complexity
Recurrence quantification analysis